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Abstract

The provability logic GLP introduced by G. Japaridze is a propositional polymodal
logic with important applications in proof theory, specificially, in ordinal analysis of
arithmetic. Though being incomplete with respect to any class of Kripke frames,
the logic GLP is complete for its neighbourhood interpretation. This completeness
result, established by L. Beklemishev and D. Gabelaia, implies strong neighbourhood
completeness of this system for the case of the so-called local semantic consequence
relation. In the given article, we consider Hilbert-style non-well-founded derivations
in the provability logic GLP and establish that GLP with the obtained derivability
relation is strongly neighbourhood complete in the case of the global semantic conse-
quence relation.

Keywords: provability logic, algebraic semantics, neighbourhood semantics, global
consequence relations, non-well-founded derivations.

1 Introduction

The provability logic GLP introduced by G. Japaridze [6] is a propositional
modal logic in a language with infinitely many modal connectives ◻0,◻1, . . . .
It is sound and complete with respect to a natural provability semantics, where
the modal connective ◻n corresponds to the provability predicate “... is prov-
able from the axioms of Peano arithmetic together with all true arithmetical
Π0
n-sentences”. This system has important applications in proof theory, speci-

ficially, in ordinal analysis of arithmetic [1]. In the given article, we consider
non-well-founded derivations in the provability logic GLP and study algebraic

1 E-mail: daniyar.shamkanov@gmail.com
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and neighbourhood semantics of the system GLP with the obtained derivability
relation.

Neighbourhood semantics is an interesting generalization of Kripke seman-
tics independently developed by D. Scott and R. Montague in [9] and [7]. The
logic GLP is incomplete with respect to any class of Kripke frames. At the same
time GLP is complete for its neighbourhood interpretation [3]. Notice that this
completeness result implies strong neighbourhood completeness of this system
for the case of the so-called local semantic consequence relation. Over neigh-
bourhood GLP-models, a formula ϕ is a local semantic consequence of Γ if for
any neighbourhood GLP-model M and any world x of M

(∀ψ ∈ Γ M, x ⊧ ψ) ⇒M, x ⊧ ϕ.

A formula ϕ is a global semantic consequence of Γ if for any neighbourhood
GLP-model M

(∀ψ ∈ Γ M⊧ ψ) ⇒M ⊧ ϕ.

Recently, global neighbourhood completeness of the Gödel-Löb provability logic
GL with non-well-founded derivations was established in [10,11]. In the given
article, we obtain an analogous result for the provability logic GLP.

2 Non-well-founded derivations in GLP

In this section we recall the provability logic GLP and define Hilbert-style non-
well-founded derivations for the given system.

The provability logic GLP is a propositional modal logic in a language with
infinitely many modal connectives ◻0,◻1, . . . . In other words, formulas of the
logic are built from the countable set of variables PV = {p, q, . . .} and the
constant � using propositional connectives → and ◻i for each i ∈ N. We treat
other Boolean connectives and modal connectives ◇i as abbreviations:

¬ϕ ∶= ϕ→ �, ⊺ ∶= ¬�, ϕ ∧ ψ ∶= ¬(ϕ→ ¬ψ),

ϕ ∨ ψ ∶= ¬ϕ→ ψ, ϕ↔ ψ ∶= (ϕ→ ψ) ∧ (ψ → ϕ), ◇iϕ ∶= ¬ ◻i ¬ϕ.

By Fm, we denote the set of formulas of GLP.
The provability logic GLP is defined by the following axiom schemes and

inference rules.
Axiom schemes:

(i) the tautologies of classical propositional logic;

(ii) ◻i(ϕ→ ψ) → (◻iϕ→ ◻iψ);

(iii) ◻i(◻iϕ→ ϕ) → ◻iϕ;

(iv) ◇iϕ→ ◻i+1 ◇i ϕ;

(v) ◻iϕ→ ◻i+1ϕ.

Inference rules:

ϕ ϕ→ ψ
mp ,

ψ

ϕ
nec .

◻0ϕ
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We remark that transitivity of the modal connectives ◻i is provable in GLP,
i.e. GLP ⊢ ◻iψ → ◻i ◻i ψ for any formula ψ and any i ∈ N.

Now we define non-well-founded derivations in GLP. An ∞-derivation is a
(possibly infinite) tree whose nodes are marked by formulas of GLP and that
is constructed according to the rules (mp) and (nec). In addition, any infinite
branch in an ∞-derivation must contain infinitely many applications of the rule
(nec). An assumption leaf of an ∞-derivation is a leaf that is not marked by
an axiom of GLP.

The main fragment of an ∞-derivation is a finite tree obtained from the ∞-
derivation by cutting every infinite branch at the nearest to the root application
of the rule (nec). The local height ∣π∣ of an ∞-derivation π is the length of the
longest branch in its main fragment. An ∞-derivation consisting of a single
formula only has height 0.

For example, consider the following ∞-derivation

⋮
◻0p3 ◻0p3 → p2mp

p2nec
◻0p2 ◻0p2 → p1mp

p1nec
◻0p1 ◻0p1 → p0mp ,

p0

where assumption leaves are marked by formulas of the form ◻0pi+1 → pi. The
local height of this ∞-derivation equals to 1 and its main fragment has the form

◻0p1 ◻0p1 → p0mp .
p0

Definition 2.1 We set Γ ⊢g ϕ if there is an ∞-derivation with the root marked
by ϕ in which all assumption leaves are marked by some elements of Γ.

Proposition 2.2 For any formula ϕ, we have

GLP ⊢ ϕ⇐⇒∅ ⊢g ϕ.

We give a proof of this proposition in the Appendix since this statement is not
essential for the global neighbourhood completeness result of the final section.

3 Algebraic semantics

In this section we consider algebraic semantics for the provability logic GLP
enriched with non-well-founded derivations.

A Magari algebra (or a diagonalizable algebra) A = (A,∧,∨,→,0,1,◻) is a
Boolean algebra (A,∧,∨,→,0,1) together with a unary map ◻∶A→ A satisfying
the identities:

◻1 = 1, ◻(x ∧ y) = ◻x ∧ ◻y, ◻(◻x→ x) = ◻x.

For any Magari algebra A, the mapping ◻ is monotone with respect to the
order (of the Boolean part) of A. Indeed, if a ⩽ b, then a ∧ b = a, ◻a ∧ ◻b =
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◻(a∧b) = ◻a, and ◻a ⩽ ◻b. In addition, we remark that an inequality ◻x ⩽ ◻◻x
holds in any Magari algebra.

We call a Magari algebra ◻-founded (or Pakhomov-Walsh-founded) 2 if, for
every sequence of its elements (ai)i∈N such that ◻ai+1 ⩽ ai, we have a0 = 1.
Note that, for any such sequence (ai)i∈N, all elements ai are equal to 1 in any
◻-founded Magari algebra.

We give a series of examples of ◻-founded Magari algebras. A Magari
algebra is called σ-complete if its underlying Boolean algebra is σ-complete,
that is, each of its countable subsets S has the least upper bound ⋁S. An
equivalent condition is that every countable subset S has the greatest lower
bound ⋀S.

Proposition 3.1 Any σ-complete Magari algebra is ◻-founded.

Proof. Assume we have a σ-complete Magari algebra A and a sequence of its
elements (ai)i∈N such that ◻ai+1 ⩽ ai. We shall prove that a0 = 1.

Put b = ⋀
i∈N
ai. For any i ∈ N, we have b ⩽ ai+1 and ◻b ⩽ ◻ai+1 ⩽ ai. Hence,

◻b ⩽ b, ◻b→ b = 1, ◻b = ◻(◻b→ b) = ◻1 = 1, b = 1.

We obtain that a0 = 1. ◻

Remark 3.2 Let us additionally mention an arithmetical example of ◻-
founded Magari algebra without going into details. If we consider the second-
order arithmetical theory Σ1

1 − AC0 extended with all true Σ1
1-sentences, then

its provability algebra forms a ◻-founded Magari algebra. This observation can
be obtained following the lines of Theorem 3.2 from [8].

The notion of ◻-founded Magari algebra A can be defined in terms of the
binary relation ≺A on A:

a ≺A b⇐⇒ ◻a ⩽ b.

Proposition 3.3 (see Proposition 3.1 from [11]) For any Magari algebra
A = (A,∧,∨,→,0,1,◻), the relation ≺A is a strict partial order on A ∖ {1}.

Proposition 3.4 (see Proposition 3.2 from [11]) For any Magari algebra
A = (A,∧,∨,→,0,1,◻), the algebra A is ◻-founded if and only if the partial
order ≺A on A ∖ {1} is well-founded.

A Boolean algebra (A,∧,∨,→,0,1) together with a sequence of unary map-
pings ◻0,◻1, . . . is called a GLP-algebra if it satisfies the following conditions
for each i ∈ N:

(i) (A,∧,∨,→,0,1,◻i) is a Magari algebra;

(ii) ◇ia ⩽ ◻i+1 ◇i a for any a ∈ A;

(iii) ◻ia ⩽ ◻i+1a for any a ∈ A.

2 This notion has been inspired by an article of F. Pakhomov and J. Walsh [8].
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A GLP-algebra A = (A,∧,∨,→,0,1,◻0,◻1, . . . ) is called ◻-founded if the
Magari algebra A0 = (A,∧,∨,→,0,1,◻0) is ◻-founded. In the same way, we
apply notions defined for the Magari algebra A0 to A. From Proposition 3.1,
we immediately see that any σ-complete GLP-algebra is ◻-founded.

Now we define a semantic consequence relation over ◻-founded GLP-
algebras, which, we shall see, corresponds to the derivability relation ⊢g. A val-
uation in a GLP-algebra A = (A,∧,∨,→,0,1,◻0,◻1, . . . ) is a function v∶Fm → A
such that v(�) = 0, v(ϕ→ ψ) = v(ϕ) → v(ψ), and v(◻iϕ) = ◻iv(ϕ).

Definition 3.5 Given a set of formulas Γ and a formula ϕ, we set Γ ⊫g ϕ if
for any ◻-founded GLP-algebra A and any valuation v in A

(∀ψ ∈ Γ v(ψ) = 1) ⇒ v(ϕ) = 1.

Lemma 3.6 For any set of formulas Γ and any formula ϕ, we have

Γ ⊢g ϕÔ⇒ Γ⊫g ϕ.

Proof. Assume π is an ∞-derivation with the root marked by ϕ in which all
assumption leaves are marked by some elements of Γ. In addition, assume we
have a ◻-founded GLP-algebra A = (X,∧,∨,→,0,1,◻0,◻1, . . . ) together with a
valuation v in A such that v(ψ) = 1 for any ψ ∈ Γ. We shall prove that v(ϕ) = 1.

For any node w of the ∞-derivation π, let πw be the subtree of π with
the root w. Also, put r(w) = ∣πw ∣. In addition, let ϕw be the formula of the
node w. A node w belongs to the (n + 1)-th slice of π if there are precisely n
applications of the rule (nec) on the path from this node to the root of π. By
cn, we denote the element ⋀{v(ϕw) ∣ w belongs to the (n + 1)-th slice of π}.

We claim that ◻0cn+1 ⩽ cn for any n ∈ N. It is sufficient to prove that
◻0cn+1 ⩽ v(ϕw) whenever w belongs to the (n + 1)-th slice of π. The proof is
by induction on r(w).

If ϕw is an axiom of GLP or an element of Γ, then we immediately obtain
the required statement. Otherwise, ϕw is obtained by an application of an
inference rule in π.

If ϕw is obtained by the rule (nec), then this formula has the form ◻0ϕu,
where u is the premise of w. We see that u belongs to the (n+ 2)-th slice of π.
Consequently cn+1 ⩽ v(ϕu) and ◻0cn+1 ⩽ v(ϕw).

Suppose ϕw is obtained by the rule (mp). Consider the premises u1 and u2
of w. We have r(u1) < r(w) and r(u2) < r(w). By our induction hypotheses,
we obtain ◻0cn+1 ⩽ v(ϕu1) ∧ v(ϕu2) ⩽ v(ϕw).

This proves the claim that ◻0cn+1 ⩽ cn for any n ∈ N. Applying ◻-
foundedness of A, we note that c0 = 1. Since the root of the ∞-derivation
π belongs to the first slice of π, we conclude that c0 ⩽ v(ϕ) and v(ϕ) = 1. ◻

Theorem 3.7 (Algebraic completeness) For any set of formulas Γ and
any formula ϕ, we have

Γ ⊢g ϕ⇐⇒ Γ⊫g ϕ.

Proof. The left-to-right implication follows from Lemma 3.6. We prove the
converse. Assume Γ ⊫g ϕ. Consider the theory T = {θ ∈ Fm ∣ Γ ⊢g θ}. We see
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that T contains all axioms of GLP and is closed under the rules (mp) and (nec).
We define an equivalence relation ∼T on the set of formulas Fm by putting
µ ∼T ρ if and only of (µ↔ ρ) ∈ T . Let us denote the equivalence class of µ by
[µ]T . Applying the Lindenbaum-Tarski construction, we obtain a GLP-algebra
LT on the set of equivalence classes of formulas, where [µ]T ∧ [ρ]T = [µ ∧ ρ]T ,
[µ]T ∨ [ρ]T = [µ ∨ ρ]T , [µ]T → [ρ]T = [µ → ρ]T , 0 = [�]T , 1 = [⊺]T and
◻i[µ] = [◻iµ].

Let us check that the algebra LT is ◻-founded. Assume we have a sequence
of formulas (µi)i∈N such that ◻0[µi+1]T ⩽ [µi]T . We have [◻0µi+1 → µi]T = 1
and (◻0µi+1 → µi) ∈ T . For every i ∈ N, there exists an ∞-derivation πi for the
formula ◻0µi+1 → µi such that all assumption leaves of πi are marked by some
elements of Γ. We obtain the following ∞-derivation for the formula µ0:

⋮
◻0µ3

π2
⋮

◻0µ3 → µ2mp
µ2nec
◻0µ2

π1
⋮

◻0µ2 → µ1mp
µ1nec
◻0µ1

π0
⋮

◻0µ1 → µ0mp ,
µ0

where all assumption leaves are marked by some elements of Γ. Hence, µ0 ∈ T
and [µ0]T = [⊺]T = 1. We conclude that the GLP-algebra LT is ◻-founded.

Consider the valuation v∶ θ ↦ [θ]T in the GLP-algebra LT . Since Γ ⊂ T ,
we have v(ψ) = 1 for any ψ ∈ Γ. From the assumption Γ ⊫ ϕ, we obtain that
v(ϕ) = 1. Consequently ϕ ∈ T and Γ ⊢g ϕ. ◻

4 Neighbourhood semantics

In this section we recall neighbourhood semantics of the provability logic GLP.
An Esakia frame (or a Magari frame) X = (X,◻) is a set X together with

a mapping ◻ ∶P(X) → P(X) such that the powerset Boolean algebra P(X)
with the mapping ◻ forms a Magari algebra.

We briefly recall a connection between scattered topological spaces and
Esakia frames (cf. [4]). Note that we allow Esakia frames and topological
spaces to be empty.

In a topological space, an open set U containing a point x is called a neigh-
bourhood of x. A set U is a punctured neighbourhood of x if x ∉ U and U ∪ {x}
is open. For a topological space (X,τ) and a subset V the derived set dτ(V )
of V is the set of limit points of V :

x ∈ dτ(V ) ⇐⇒ ∀U ∈ τ (x ∈ U ⇒ ∃y ≠ x (y ∈ U ∩ V )) .

The co-derived set cdτ(V ) of V is defined as X ∖ dτ(X ∖ V ). By definition,
x ∈ cdτ(V ) if and only if there is a punctured neighbourhood of x entirely
contained in V .
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In a topological space, a point having an empty punctured neighbourhood is
called isolated. A topological space (X,τ) is scattered if each non-empty subset
of X (as a topological space with the inherited topology) has an isolated point.

Proposition 4.1 (L. Esakia [5]) If (X,◻) is an Esakia frame, then X bears
a unique topology τ for which ◻ = cdτ . Moreover, the space (X,τ) is scattered.

Proposition 4.2 (H. Simmons [12], L. Esakia [5]) If (X,τ) is a scattered
topological space, then (X, cdτ) is an Esakia frame.

A neighbourhood GLP-frame X = (X,◻0,◻1, . . . ) is a set X together with
a sequence of unary mappings ◻0,◻1, . . . on P(X) such that the powerset
Boolean algebra P(X) with the given mappings forms a GLP-algebra. Elements
of X are called worlds of the frame X . A neighbourhood GLP-model is a pair
M = (X , v), where X is a neighbourhood GLP-frame and v is a valuation in
the powerset GLP-algebra of X . A formula ϕ is true at a world x of a model
M, written as M, x ⊧ ϕ, if x ∈ v(ϕ). A formula ϕ is called true in M, written
as M⊧ ϕ, if ϕ is true at all worlds of M.

A GLP-space is a polytopological space (X,τ0, τ1, . . . ), where, for each i ∈ N,
τi is scattered, τi ⊂ τi+1, and dτi(V ) ∈ τi+1 for any V ∈ P(X).

Proposition 4.3 (see Proposition 4 from [4])

(i) If (X,◻0,◻1, . . . ) is a GLP-frame, then X bears a unique series of topolo-
gies τ0, τ1, . . . such that ◻i = cdτi for every i ∈ N. Moreover, the polytopo-
logical space (X,τ0, τ1, . . . ) is a GLP-space.

(ii) If (X,τ0, τ1, . . . ) is a GLP-space, then (X, cdτ0 , cdτ1 , . . . ) is a GLP-frame.

In the sequel, we don’t distinguish GLP-frames and corresponding poly-
topological spaces so that we use the topological terminology referring to
(X,τ0, τ1, . . . ) for the frame (X, cdτ0 , cdτ1 , . . . ). For example, we say that a
subset U is n-open in (X,◻0,◻1, . . . ) if it belongs to the corresponding n-th
topology on X (which is equivalent to U ⊂ ◻nU).

Now we define a global semantic consequence relation over GLP-frames.

Definition 4.4 Given a set of formulas Γ and a formula ϕ, we set Γ ⊧g ϕ if
for any GLP-model M

(∀ψ ∈ Γ M⊧ ψ) ⇒M ⊧ ϕ.

Let us recall the following neighbourhood completeness result obtained by
L. Beklemishev and D. Gabelaia in [3].

Theorem 4.5 For any formula ϕ, if GLP ⊬ ϕ, then there is a GLP-model M
and a world x such that M, x ⊭ ϕ.

We notice that, for any GLP-frame X , the powerset GLP-algebra of X is
σ-complete. Consequently this algebra is ◻-founded by Proposition 3.1. Hence
we immediately obtain the following proposition.

Proposition 4.6 For any set of formulas Γ and any formula ϕ, we have

Γ⊫g ϕÔ⇒ Γ ⊧g ϕ.
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5 Representation of ◻-founded Magari algebras

In this section we prove that any ◻-founded Magari algebra can be embedded
into the powerset Magari algebra of an Esakia frame. We also obtain some
related results, which will be applied in the next section.

From Proposition 3.4, we know that a Magari algebraA = (A,∧,∨,→,0,1,◻)
is ◻-founded if and only if the binary relation ≺A is well-founded on A ∖ {1},
where

a ≺A b⇐⇒ ◻a ⩽ b.

Let us recall some basic properties of well-founded relations.
A well-founded set is a pair S = (S,≺), where ≺ is a well-founded relation

on S. For any element a of S, its ordinal height in S is denoted by htS(a).
Recall that htS is defined by transfinite recursion on ≺ as follows:

htS(a) = sup{htS(b) + 1 ∣ b ≺ a}.

A homomorphism from S1 = (S1,≺1) to S2 = (S2,≺2) is a function f ∶S1 → S2

such that f(b) ≺2 f(c) whenever b ≺1 c.

Proposition 5.1 Suppose f ∶ S1 → S2 is a homomorphism of well-founded sets
and a is an element of S1. Then htS1(a) ⩽ htS2(f(a)).

For well-founded sets S1 = (S1,≺1) and S2 = (S2,≺2), their product S1 × S2
is defined as the set S1 × S2 together with the following relation

(b1, b2) ≺ (c1, c2) ⇐⇒ b1 ≺1 c1 and b2 ≺2 c2.

Clearly, ≺ is a well-founded relation on S1 × S2.

Proposition 5.2 Suppose a and b are elements of well-founded sets S1 and S2
respectively. Then htS1×S2((a, b)) = min{htS1(a),htS2(b)}.

For an element a of a ◻-founded Magari algebra A, define htA(a) as the
ordinal height of a with respect to ≺A. We put htA(a) = ∞ if a = 1.

Lemma 5.3 Suppose a and b are elements of a ◻-founded Magari algebra A.
Then htA(a ∧ b) = min{htA(a),htA(b)} and htA(a) + 1 ⩽ htA(◻a), where we
define ∞+ 1 ∶= ∞.

Proof. Assume we have a ◻-founded Magari algebra A = (A,∧,∨,→,0,1,◻)
and two elements a and b of A.

First, we prove that htA(a ∧ b) = min{htA(a),htA(b)}. If a = 1 or b = 1,
then the equality immediately holds. Suppose a ≠ 1 and b ≠ 1. Let S be the
set A ∖ {1} together with the well-founded relation ≺A. We have a ∧ b ≠ 1,
htA(a) = htS(a), htA(b) = htS(b) and htA(a ∧ b) = htS(a ∧ b). The mapping

f ∶ (c, d) ↦ c ∧ d

is a homomorphism from S × S to S. From Proposition 5.2 and Proposition
5.1, we have

min{htS(a),htS(b)} = htS×S((a, b)) ⩽ htS(a ∧ b).
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Consequently,
min{htA(a),htA(b)} ⩽ htA(a ∧ b).

On the other hand, htA(a ∧ b) ⩽ htA(a) since

{e ∈ A ∖ {1} ∣ e ≺A (a ∧ b)} ⊂ {e ∈ A ∖ {1} ∣ e ≺A a}.

Analogously, we have htA(a ∧ b) ⩽ htA(b). It follows that

htA(a ∧ b) = min{htA(a),htA(b)}.

Now we prove htA(a) + 1 ⩽ htA(◻a). If ◻a = 1, then the inequality imme-
diately holds. Suppose ◻a ≠ 1. Then a ≠ 1. We see a ≺A ◻a. The required
inequality holds from the definition of htA. ◻

For a ◻-founded Magari algebra A = (A,∧,∨,→,0,1,◻) and an ordinal γ,
put MA(γ) = {a ∈ A ∣ γ ⩽ htA(a)}. We see that MA(0) = A and MA(δ) ⊃ MA(γ)
whenever δ ⩽ γ.

Lemma 5.4 For any ◻-founded Magari algebra A and any ordinal γ, the set
MA(γ) is a filter in A.

Proof. Suppose a and b belong to MA(γ). Then γ ⩽ htA(a) and γ ⩽ htA(b).
We have γ ⩽ min{htA(a),htA(b)} = htA(a ∧ b) by Lemma 5.3. Consequently
a ∧ b belongs to MA(γ).

Now suppose c belongs to MA(γ) and c ⩽ d. We shall show that d ∈ MA(γ).
We have γ ⩽ htA(c) = htA(c ∧ d) = min{htA(c),htA(d)} ⩽ htA(d) by Lemma
5.3. Hence d ∈ MA(γ). ◻

Let Ult A be the set of all ultrafilters of (the Boolean part of) a Magari
algebra A = (A,∧,∨,→,0,1,◻). Put â = {u ∈ Ult A ∣ a ∈ u} for a ∈ A. We recall
that the mapping ⋅̂ ∶a↦ â is an embedding of the Boolean algebra (A,∧,∨,→
,0,1) into the powerset Boolean algebra P(Ult A) by Stone’s representation
theorem.

Lemma 5.5 For any ◻-founded Magari algebra A, there exists a scattered
topology τ on Ult A such that ◻̂a = cdτ(â) for any element a of A.

Proof. Assume we have a ◻-founded Magari algebra A = (A,∧,∨,→,0,1,◻).
Let ht(A) = sup{htA(a) + 1 ∣ a ∈ A ∖ {1}}. We see that MA(ht(A)) = {1}. For
an ultrafilter u of A, set rk(u) ∶= min{δ ⩽ ht(A) ∣ MA(δ) ⊂ u}. Also, for an
ordinal γ, put I (γ) ∶= {u ∈ Ult A ∣ rk(u) < γ}.

Set τ = {V ⊂ Ult A ∣ ∀u ∈ V ∃a ∈ A (◻a ∈ u) ∧ (⊡̂a ∩ I (rk(u)) ⊂ V )}, where
⊡a = a ∧ ◻a.

Let us check that τ is a topology on Ult A. Trivially, ∅ ∈ τ and τ is
closed under arbitrary unions. For any u ∈ Ult A, we see that ◻1 = 1 ∈ u and
⊡̂1 ∩ I (rk(u)) ⊂ Ult A. Consequently Ult A ∈ τ . Assume S0 ∈ τ and S1 ∈ τ .
Consider an arbitrary u ∈ S0∩S1. By definition of τ , there exist elements b and
c of A such that ◻b ∈ u, ◻c ∈ u, ⊡̂b ∩ I (rk(u)) ⊂ S0 and ⊡̂c ∩ I (rk(u)) ⊂ S1. We

have ◻(b∧c) = (◻b∧◻c) ∈ u and ⊡̂(b ∧ c)∩I (rk(u)) = ⊡̂a∩⊡̂c∩I (rk(u)) ⊂ S0∩S1.
Therefore S0 ∩ S1 ∈ τ . This shows that τ is a topology on Ult A.
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It easily follows from the definition of τ that ⊡̂a ∈ τ , for any a ∈ A, and
I (γ) ∈ τ , for any ordinal γ. Now we claim that τ is scattered. Consider any
non-empty subset S of Ult A. There is an ultrafilter h ∈ S such that rk(h) =
min{rk(u) ∣ u ∈ S}. We see that a set {h} ∪ I (rk(h)) is a τ -neighbourhood of
h and S ∩ ({h} ∪ I (rk(h))) = {h}. Hence the ultrafilter h is an isolated point
in S. This proves that τ is a scattered topology.

It remains to show that ◻̂a = cdτ(â) for any a ∈ A. First, we check that
◻̂a ⊂ cdτ(â). For any ultrafilter d, if d ∈ ◻̂a, then ⊡̂a ∩ I (rk(d)) is a punctured
neighbourhood of d. Also, ⊡̂a∩I (rk(d)) ⊂ â. By definition of the co-derived-set
operator, d ∈ cdτ(â). Consequently ◻̂a ⊂ cdτ(â).

Now we claim that cdτ(â) ⊂ ◻̂a. Consider any ultrafilter d such that d ∉ ◻̂a.
Let W be an arbitrary punctured neighbourhood of d. It is sufficient to show
that W is not included in â.

By definition of τ , there exists an element e of A such that ◻e ∈ d and
⊡̂e ∩ I (rk(d)) ⊂ W . From the conditions ◻e ∈ d and ◻a ∉ d, it follows that
◻(⊡e→ a) ∉ d. Hence ◻(⊡e→ a) ∉ MA(rk(d)) ⊂ d and htA(◻(⊡e→ a)) < rk(d).
Note that (⊡e→ a) ∉ MA(htA(⊡e→ a)+1). By the Boolean ultrafilter theorem,
there exists an ultrafilter w of A such that (⊡e→ a) ∉ w and MA(htA(⊡e→ a)+
1) ⊂ w. We see that ⊡e ∈ w, a ∉ w and rk(w) ⩽ htA(⊡e → a) + 1. From Lemma
5.3, we have htA(⊡e → a) + 1 ⩽ htA(◻(⊡e → a)) < rk(d). Thus rk(w) < rk(d),
w ∈ ⊡̂e ∩ I (rk(d)) and w ∉ â. Consequently w is an element of W , which does
not belong to â.

We obtain that none of the punctured neighbourhoods of d are included in
â. In other words, d ∉ cdτ(â) for any d ∉ ◻̂a. We conclude that cdτ(â) ⊂ ◻̂a.
Hence ◻̂a = cdτ(â). ◻

Theorem 5.6 A Magari algebra is ◻-founded if and only if it is embeddable
into the powerset Magari algebra of an Esakia frame.

Proof. (if) Suppose a Magari algebra A is isomorphic to a subalgebra of the
powerset Magari algebra of an Esakia frame X . The powerset Magari algebra
of X is σ-complete. Hence, by Proposition 3.1, it is ◻-founded. Since any
subalgebra of a ◻-founded Magari algebra is ◻-founded, the algebra A is ◻-
founded.

(only if) Suppose a Magari algebra A is ◻-founded. By Lemma 5.5, there
exists a scattered topology τ on Ult A such that ◻̂a = cdτ(â) for any element
a of A. We know that X = (Ult A, cdτ) is an Esakia frame by Proposition
4.2. We see that the mapping ⋅̂ ∶a ↦ â is an injective homomorphism from
A to the powerset Magari algebra of the frame X . Therefore the algebra A is
embeddable into the powerset Magari algebra of an Esakia frame. ◻

For a Magari algebra A, by TopA, we denote the set of all scattered topolo-
gies τ on Ult A such that ◻̂a = cdτ(â) for any element a of A.

Lemma 5.7 Suppose A is a Magari algebra and τ ∈ Top A. Then there is a
maximal with respect to inclusion element of Top A that extends τ .

Proof. Consider the set P = {σ ∈ Top A ∣ τ ⊂ σ}, which is a partially ordered
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set with respect to inclusion. We claim that any chain in P has an upper
bound.

Assume C is a chain in P . Let ν be the coarsest topology containing τ
and ⋃C. Note that the topology ν is scattered as an extension of a scattered
topology. For any element a of A, we have ◻̂a = cdτ(â) ⊂ cdν(â), because ν is
an extension of τ .

Now assume c is an arbitrary element of A and u ∈ cdν(ĉ). We check that
u ∈ ◻̂c. By definition of the co-derived-set operator, there is a punctured ν-
neighbourhood V of u such that V ⊂ ĉ. Since the set τ ∪ ⋃C is closed under
finite intersections, it is a basis of ν. Consequently there is a subset W of V with
W ∪ {u} ∈ τ ∪ ⋃C. We see that W ⊂ ĉ and W is a punctured neighbourhood
of u with respect to a topology κ ∈ {τ} ∪C ⊂ Top A. Hence u ∈ cdκ(ĉ) = ◻̂c.

We obtain that ◻̂a = cdν(â) for any element a of A. Therefore ν ∈ Top A
and ν is an upper bound for C in P .

We see that any chain in P has an upper bound. By Zorn’s lemma, there
is a maximal element in P , which is the required maximal extension of τ . ◻

The following lemma was inspired by Lemma 4.5 from [3].

Lemma 5.8 Suppose A is a Magari algebra and τ is a maximal element of
TopA. Then, for any u ∈ UltA and any V ∈ τ , we have V ∪{u} ∈ τ or there are
a τ -open set W and an element a of A such that u ∈W , ◻a ∉ u and V ∩W ⊂ â.

Proof. Assume u ∈ Ult A and V ∈ τ . It is sufficient to consider the case
when V ∪ {u} ∉ τ . Let σ be the coarsest topology containing τ and the set
V ∪ {u}. The topology σ is scattered as an extension of a scattered topology.
Since τ is a maximal element of Top A, the topology σ does not belong to
Top A and there exists an element a of A such that ◻̂a ≠ cdσ(â). Notice that
◻̂a = cdτ(â) ⊂ cdσ(â), because τ ⊂ σ. Thus there is an ultrafilter h such that
h ∈ cdσ(â) and h ∉ cdτ(â) = ◻̂a. Hence there is a punctured σ-neighbourhood
of h that is included in â. In addition, note that τ ∪ {W ∩ (V ∪ {u}) ∣ W ∈ τ}
is a basis of σ. We see that h ∈ B and B ∖ {h} ⊂ â for some B ∈ τ ∪ {W ∩
(V ∪ {u}) ∣ W ∈ τ}. If B ∈ τ , then h ∈ cdτ(â). This is a contradiction with
the condition h ∉ cdτ(â). Therefore B has the form W ∩ (V ∪ {u}) for some
W ∈ τ . Since h ∈ B = W ∩ (V ∪ {u}), we have h ∈ V or h = u. If h ∈ V , then
h ∈W ∩ V and (W ∩ V ) ∖ {h} ⊂ â. In this case, we obtain h ∈ cdτ(â), which is
a contradiction. Consequently h ∉ V and h = u. It follows that ◻a ∉ u, u ∈ W
and W ∩ V = (W ∩ (V ∪ {u})) ∖ {h} ⊂ â.

◻

For a scattered topological space (X,τ), the derivative topology τ+ on X is
defined as the coarsest topology including τ and {dτ(Y ) ∣ Y ⊂ X}. The next
lemma was inspired by Lemma 5.1 from [3].

Lemma 5.9 Suppose A = (A,∧,∨,→,0,1,◻) is a Magari algebra and τ is a
maximal element of TopA. Then the topology τ+ is generated by τ and the sets
dτ(â) for a ∈ A.

Proof. Assume τ is a maximal element of Top A. Let τ ′ be the topology
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generated by τ and the sets dτ(â) for a ∈ A. It is clear that τ ′ ⊂ τ+. We prove
the converse. We shall check that dτ(Y ) is τ ′-open for any Y ⊂ Ult A.

Consider any Y ⊂ Ult A and any u ∈ dτ(Y ). We claim that there is a τ ′-
neighbourhood of u entirely contained in dτ(Y ). Suppose ◻ ◻ a ∈ u and ◻a ∉ u
for some a ∈ A. In this case, we see u ∉ ◻̂a and

{u} ∪ ◻̂a ⊂ ◻̂ ◻ a = cdτ(◻̂a) ⊂ cdτ({u} ∪ ◻̂a).

Hence the set {u} ∪ ◻̂a is τ -open. In addition, we see

u ∈ (Ult A∖ ◻̂a) = (Ult A∖ cdτ(â)) = dτ(¬̂a) ∈ τ
′.

It implies that
{u} = ({u} ∪ ◻̂a) ∩ (Ult A∖ ◻̂a) ∈ τ ′.

In other words, the ultrafilter u is a τ ′-isolated point of Ult A.
Now consider the case when, for any a ∈ A, we have ◻ ◻ a ∉ u whenever

◻a ∉ u. By intτ(X), we denote the τ -interior of a set X. Recall that cdτ(X) =
cdτ(intτ(X)) for any set X in any topological space. Put X = UltA∖Y . Since
u ∈ dτ(Y ) and u ∉ cdτ(X) = cdτ(intτ(X)), the set {u} ∪ intτ(X) ∉ τ . By
Lemma 5.8, there are a τ -open set W and an element c of A such that u ∈W ,
◻c ∉ u and intτ(X) ∩W ⊂ ĉ. Since, for any a ∈ A, ◻ ◻ a ∉ u whenever ◻a ∉ u,
we obtain ◻ ◻ c ∉ u. It follows that

u ∈W ∩ (Ult A∖ ◻̂ ◻ c) =W ∩ dτ(¬̂ ◻ c) ∈ τ
′.

Thus W ∩ (Ult A∖ ◻̂ ◻ c) is a τ ′-neighbourhood of u. It remains to show that

W ∩ (Ult A∖ ◻̂ ◻ c) ⊂ dτ(Y ).

Indeed, we have

cdτ(X) ∩W ⊂ cdτ(intτ(X)) ∩ cdτ(W ) =

= cdτ(intτ(X) ∩W ) ⊂ cdτ(ĉ) ⊂ cdτ(cdτ(ĉ)) = ◻̂ ◻ c, (1)

because W is a τ -open set and intτ(X) ∩W ⊂ ĉ. Hence,

W ∩ (Ult A∖ ◻̂ ◻ c) ⊂W ∩ (Ult A∖ (cdτ(X) ∩W )) (from 1)

=W ∩ ((Ult A∖ cdτ(X)) ∪ (Ult A∖W ))

=W ∩ (dτ(Y ) ∪ (Ult A∖W ))

= (W ∩ dτ(Y )) ∪ (W ∩ (Ult A∖W ))

=W ∩ dτ(Y )

⊂ dτ(Y ).

This argument shows that any element of dτ(Y ) belongs to this set together
with a τ ′-neighbourhood. We conclude that dτ(Y ) is τ ′-open and τ ′ = τ+.

◻
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6 Global neighbourhood completeness

In this section we prove that any ◻-founded GLP-algebra can be embedded
into the powerset algebra of a GLP-frame. As a corollary, we obtain global
neighbourhood completeness for GLP w.r.t. non-well-founded derivations.

Analogously to the case of Magari algebras, by Ult A, we denote the
set of ultrafilters of a GLP-algebra A. For a GLP-algebra A = (A,∧,∨,→
,0,1,◻0,◻1, . . . ), we denote the Magari algebra (A,∧,∨,→,0,1,◻i) by Ai. We
see Ult A = Ult Ai for any i ∈ N. We call (maximal with respect to inclusion)
elements of Top Ai (maximal) i-topologies on Ult A.

Lemma 6.1 For any GLP-algebra A and any maximal i-topology τ on Ult A,
there exists a maximal (i + 1)-topology ν on Ult A such that τ ⊂ ν and dτ(Y )
is ν-open for each Y ⊂ Ult A.

Proof. Assume we have a GLP-algebra A and a maximal i-topology τ on
Ult A. Consider the coarsest topology τ ′ containing τ+ and all sets of the form
{u}∪⊡̂i+1a, where u ∈ UltA, ◻i+1a ∈ u and ⊡i+1a = a∧◻i+1a. We see that τ ⊂ τ ′

and dτ(Y ) is τ ′-open for each Y ⊂ Ult A. Trivially, the topology τ ′ is scattered
as an extension of a scattered topology. We claim that τ ′ ∈ Top Ai+1.

We shall show that ◻̂i+1a = cdτ ′(â) for any element a of A. First, we
check that ◻̂i+1a ⊂ cdτ ′(â). For any ultrafilter d, if d ∈ ◻̂i+1a, then ⊡̂i+1a is
a punctured τ ′-neighbourhood of d. Also, ⊡̂i+1a ⊂ â. By definition of the
co-derived-set operator, d ∈ cdτ ′(â). Consequently ◻̂i+1a ⊂ cdτ ′(â).

Now we check that cdτ ′(â) ⊂ ◻̂i+1a. Consider any ultrafilter d such that
d ∉ ◻̂i+1a. In addition, let W be an arbitrary punctured τ ′- neighbourhood of
d. It is sufficient to show that W is not included in â.

We have ◻i+1a ∉ d, d ∉ W and W ∪ {d} ∈ τ ′. From Lemma 5.9, there is a
basis of τ ′ consisting of alls sets of the form

V ∩ dτ(b̂1) ∩ ⋯ ∩ dτ(b̂n) ∩ ({u1} ∪ ⊡̂i+1c1) ∩⋯ ∩ ({um} ∪ ⊡̂i+1cm),

where V ∈ τ , {b1, . . . , bn} and {c1, . . . , cm} are (possibly empty) subsets of A,
{u1, . . . , um} is a subset of Ult A. In addition, ◻i+1ck ∈ uk for k ∈ {1, . . . ,m}.
Hence we have

d ∈ (V ∩ dτ(b̂1) ∩ ⋯ ∩ dτ(b̂n) ∩ ({u1} ∪ ⊡̂i+1c1) ∩⋯ ∩ ({um} ∪ ⊡̂i+1cm)) ⊂W∪{d}

for some element of the basis of τ ′. We see that the ultrafilter d contains
◇ib1, . . . ,◇ibn and ◻i+1c1, . . . ,◻i+1cm. Also, ◇i+1¬a ∈ d. In any GLP-algebra,
we have

⋀{◇ib1, . . . ,◇ibn} ⩽ ◻i+1⋀{◇ib1, . . . ,◇ibn},

⋀{◻i+1c1, . . . ,◻i+1cm} ⩽ ◻i+1⋀{⊡i+1c1, . . . ,⊡i+1cm}.
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Further, we have

(◇i+1¬a) ∧⋀{◇ib1, . . . ,◇ibn,◻i+1c1, . . . ,◻i+1cm} ⩽

⩽ (◇i+1¬a) ∧ ◻i+1⋀{◇ib1, . . . ,◇ibn} ∧ ◻i+1⋀{⊡i+1c1, . . . ,⊡i+1cm} ⩽

⩽ ◇i+1 ((¬a) ∧⋀{◇ib1, . . . ,◇ibn,⊡i+1c1, . . . ,⊡i+1cm}) ⩽

⩽ ◇i ((¬a) ∧⋀{◇ib1, . . . ,◇ibn,⊡i+1c1, . . . ,⊡i+1cm})

We obtain ◇i ((¬a) ∧ ⋀{◇ib1, . . . ,◇ibn,⊡i+1c1, . . . ,⊡i+1cm}) ∈ d and

d ∈ dτ (¬̂a ∩ dτ(b̂1) ∩⋯ ∩ dτ(b̂n) ∩ ⊡̂i+1c1 ∩⋯ ∩ ⊡̂i+1cm) .

Since V is a τ -neighbourhood of d, there exists an ultrafilter w such that

w ∈ (V ∖ {d}) ∩ ¬̂a ∩ dτ(b̂1) ∩⋯ ∩ dτ(b̂n) ∩ ⊡̂i+1c1 ∩⋯ ∩ ⊡̂i+1cm ⊂W.

Consequently w is an element of W , which does not belong to â.
We obtain that none of the punctured τ ′-neighbourhoods of d are included

in â. In other words, d ∉ cdτ ′(â) for any d ∉ ◻̂i+1a. This argument shows that
cdτ ′(â) ⊂ ◻̂i+1a. Hence ◻̂i+1a = cdτ ′(â). We see τ ′ ∈ Top Ai+1.

Now we extend the topology τ ′ applying Lemma 5.7 and obtain the required
maximal (i + 1)-topology ν on Ult A.

◻

Lemma 6.2 For any ◻-founded GLP-algebra A, there exists a series of topolo-
gies τ0, τ1, . . . on Ult A such that (Ult A, τ0, τ1, . . . ) is a GLP-space and τi ∈
Top Ai for any i ∈ N.

Proof. From Lemma 5.5, there exists a topology τ ∈ Top A0. By Lemma
5.7, the topology τ can be extended to a maximal 0-topology τ0. Apply-
ing Lemma 6.1, we obtain a series of topologies τ1, τ2, . . . on Ult A such that
(Ult A, τ0, τ1, . . . ) is a GLP-space and τi ∈ Top Ai for any i ∈ N. ◻

The following theorem is analogous to Theorem 5.6 and is obtained by a
similar argument. So we omit the proof.

Theorem 6.3 A GLP-algebra is ◻-founded if and only if it is embeddable into
the powerset GLP-algebra of a GLP-frame.

Theorem 6.4 For any set of formulas Γ and any formula ϕ, we have

Γ ⊢g ϕ⇐⇒ Γ⊫g ϕ⇐⇒ Γ ⊧g ϕ.

Proof. From Theorem 3.7 and Proposition 4.6, it remains to show that Γ⊫ ϕ
whenever Γ ⊧ ϕ. Assume Γ ⊧ ϕ. Also assume we have a ◻-founded GLP-algebra
A = (A,∧,∨,→,0,1,◻0,◻1, . . . ) and a valuation v in A such that v(ψ) = 1 for
any ψ ∈ Γ. We shall prove v(ϕ) = 1.

By the previous theorem, there exist a GLP-frame X = (X,◻0,◻1, . . . ) and
a mapping f ∶A → P(X) such that f is an embedding of A into the powerset
GLP-algebra of X . We see that w = f ○v is valuation over X , where (X ,w) ⊧ ψ
for any ψ ∈ Γ. From the assumption Γ ⊧ ϕ, we obtain (X ,w) ⊧ ϕ. Since f is
an embedding, we conclude that v(ϕ) = 1. ◻



Shamkanov 595

Acknowledgements. I thank anonymous reviewers for their constructive
comments and attention to this work. SDG.

Appendix

Proof. [Proof of Proposition 2.2] First, we recall an important result from [2].
The logic J is obtained from GLP by replacing axiom schemes (iv-v) with the
following ones all of which are provable in GLP:

(vi) ◇iψ → ◻j ◇i ψ for i < j;

(vii) ◻iψ → ◻j ◻i ψ for i < j;

(viii) ◻iψ → ◻i ◻j ψ for i < j.

A Kripke J-frame (W,R0,R1, . . . ) is a set W together with a sequence of
binary relations on W such that

● Ri are transitive and conversely well-founded relations;

● xRiy and yRjz implies xRiz, for i < j;

● xRjy and xRiz implies yRiz, for i < j;

● xRjy and yRiz implies xRiz, for i < j.

A notion of Kripke J-model is defined in the standard way.
L. Beklemishev showed in [2] that the logic J is Kripke complete, i.e. it is

complete for its relational interpretation over the class of Kripke J-frames. In
addition, he proved the following result: if GLP ⊬ ψ, then there is a J-model K
such that all theorems of GLP are true in K and K ⊭ ψ (see Theorem 4 from
[2]).

Now we prove that for any formula ξ

GLP ⊢ ξ ⇐⇒∅ ⊢g ξ.

The left-to-right implication trivially holds. We prove the converse by reductio
ad absurdum. Assume GLP ⊬ ξ and there is an ∞-derivation π with the root
marked by ξ in which all leaves are marked by some axioms of GLP. Then there
exist a J-model K and its world w such that K,w ⊭ ξ and all theorems of GLP
are true at all worlds of K. For a node x of the ∞-derivation π, let ψx be the
formula of the node x. We define a sequence of pairs (xn,wn), where xn is a
node of π and wn is a world of K, such that K,wn ⊭ ψxn . Let x0 be the root
of π and w0 = w.

Given a pair (xn,wn) such that K,wn ⊭ ψxn , we define (xn+1,wn+1). We
see that xn is not a leaf of π. Indeed, if xn is a leaf of π, then the formula
ψxn is an axiom of GLP, which is a contradiction with the assertion that all
theorems of GLP are true at all worlds of K. We have that xn is not a leaf of
π and ψxn is obtained by an application of an inference rule in π.

Suppose ψxn is obtained by the rule (nec). Let xn+1 be the premise of xn.
We have ψxn = ◻0ψxn+1 and K,wn ⊭ ◻0ψxn+1 . Then there is a world wn+1 such
that wnR0wn+1 and K,wn+1 ⊭ ψxn+1 .
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If ψxn is obtained by the rule (mp), then there is a node y such that y is a
premise of xn and K,wn ⊭ ψy. Set xn+1 = y and wn+1 = wn.

The sequence (xn,wn) is well-defined. We see that x0, x1, . . . is an infi-
nite branch in π. In addition, the sequence w0,w1, . . . satisfies the condition:
wnR0wn+1 if xn is a conclusion of the rule (nec) in π, and wn = wn+1, other-
wise. Since π is an ∞-derivation, the branch x0, x1, . . . contains infinitely many
applications of the rule (nec). Consequently, there is an infinite ascending se-
quence of worlds in K with respect to the relation R0, which is a contradiction
with the assertion that K is a J-model. This contradiction concluds the proof.

◻
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J. Kennedy and R. de Queiroz, editors, Logic, Language, Information, and Computation.
24th International Workshop, WoLLIC 2017 (London, UK, July 18-21, 2017), number
103888 in Lecture Notes in Computer Science (2017), pp. 358–371.

[11] Shamkanov, D., Non-well-founded derivations in the Gödel-Löb provability logic, The
Review of symbolic Logic (2019), https://doi.org/10.107/S1755020319000613.

[12] Simmons, H., Topological aspects of suitable theories, Proceedings of the Edinburgh
Mathematical Society 19 (1975), pp. 383–391.


	Introduction
	Non-well-founded derivations in GLP
	Algebraic semantics
	Neighbourhood semantics
	Representation of -founded Magari algebras
	Global neighbourhood completeness
	References

