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Abstract

In [38], one of the present authors introduced a system of connexive logic, called C,
as a simple variant of Nelson’s Logic N4, obtained by making a small change in the
falsification clause for the conditional. This was an important step marked in the field
of connexive logic since C can be seen as the first system of connexive logic with an
intuitively plausible semantics. The aim of this article is to consider an extension of
C obtained by adding the law of excluded middle with respect to the strong negation.
The extension of C is motivated by three questions. The first question comes from a
system CN devised by John Cantwell. The second question concerns how many more
connexive theses, beside the basic theses of Aristotle and Boethius, can be captured
within the framework suggested in the above paper. The third question addresses
the relation between constructivity and the law of excluded middle. We will show
that the quantified version of our extension of C satisfies the Existence Property and
its dual, but fails to satisfy the Disjunction Property and its dual when the law of
excluded middle is restricted to atomic formulas. We will also mention some open
problems related to the new system introduced in this article.

Keywords: Connexive logic, Constructive logic, Law of excluded middle, Nelson
logic, Many-valued logic, FDE, Disjunction Property, Existence Property.

1 Introduction

Connexive logics are traditionally characterized as systems validating the theses
of Aristotle and Boethius, namely the following theses (cf. [20,39] for surveys):

Aristotle ∼(∼A→ A), ∼(A→ ∼A);
Boethius (A→ B)→ ∼(A→ ∼B), (A→ ∼B)→ ∼(A→ B).
Moreover, we require that (A→ B)→ (B → A) fails to be a theorem.

As one can easily observe, these characteristic theses are not valid in
classical logic. In other words, connexive logics belong to a larger family of
nonclassical logics known as contra-classical logics (cf. [15]). Thus it remained
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as a non-trivial task to find an intuitive system of connexive logic. An impor-
tant progress was marked when one of the present authors, in [38], suggested
to capture connexive theses through a different falsity condition for the condi-
tional by building on the elegant framework of the four-valued logic known as
FDE, or Belnap-Dunn logic. 3 More specifically, a system of connexive logic
called C was introduced as a variant of Nelson’s logic N4 (cf. [37,23,16] and
references therein) by making a small change to the falsity condition for the
conditional (cf. Remark 2.2). 4 As Graham Priest notes in [31, p. 178], the
system C is most likely to be “one of the simplest and most natural.”

The aim of this article is to consider an extension of C obtained by adding
the law of excluded middle (LEM hereafter) with respect to the strong negation.
The extension of C is motivated by the following three questions.

Question 1: Can we improve Cantwell’s CN? In [6], John Cantwell
addresses the question of how to negate indicative conditionals, and defends
the following three-valued truth table, suggested by Nuel D. Belnap in [5]:

A ∼A
t f
− −
f t

A→B t − f

t t − f
− t − f
f − − −

A notable feature here is that the third value is meant to be a gappy value,
and that when a conditional has a false antecedent it lacks a truth value. As a
byproduct, two formulas ∼(A→ B) and A→ ∼B receive exactly the same value
for every assignment, and thus these two formulas are equivalent. 5

Cantwell then defined the consequence relation by designating both t and
−, which can be seen as preserving non-false values. As a consequence of this,
Cantwell’s logic CN includes both Aristotle’s and Boethius’ theses, and thus
is connexive, though connexivity is not mentioned at all.

However, CN also has the feature of the pure →-fragment of the resulting
logic being classical. This implies that formulas such as (A→B)∨(B→C) hold
for arbitrary A, B and C. We are fully aware that there are attempts aiming at
making sense of the material conditional as an indicative conditional (cf. [32]
and references therein). But, it also seems to be a natural question if we can
replace the classical conditional by a better conditional, such as a constructive
conditional. And this is precisely the first question that motivates us to explore
the extension of C by LEM.

Question 2: How many desiderata, listed by Estrada-González and
Ramı́rez-Cámara, can be met by connexive logics à la C? In [12],
Luis Estrada-González and Elisángela Ramı́rez-Cámara offer a list of desider-
ata for connexive logics which contains more than two characteristic theses of

3 For an overview of systems related to FDE, cf. [29].
4 Tweaking the falsity condition for other connectives seems to be interesting from the
perspective of contra-classical logics (cf. [30]).
5 See [10,11] for a recent discussion on CN. See also [9,28] for negated indicative conditionals
being equivalent to formulas involving a modality.



Omori, Wansing 505

connexive logics. In particular, the list contains the following formulas:

Aristotle’s second thesis ∼((A→ B) ∧ (∼A→ B));
Abelard’s thesis ∼((A→ B) ∧ (A→ ∼B)). 6

Note that on the one hand, in [40], it has been argued that the above theses
should not be considered as defining principles of connexive logic because they
are motivated by the idea of negation as cancellation, which is said to be un-
suitable as a basis for any validity claims. On the other hand, however, the
above formulas are included, for example, in probabilistic approaches to con-
ditionals, and thus interests into these formulas go beyond technical curiosity.
They rather seem to capture certain intuitions on conditionals.

Regardless of one’s opinion on the above two theses, it is mentioned al-
ready in [40,41] that the system C fails to include Aristotle’s second thesis and
Abelard’s thesis. But, this does not mean that variants of C will fail both or
at least one of the above theses. And this is precisely the second question that
motivates us to explore the extension of C by LEM.

Question 3: What is the relation between constructivity and LEM?
As per Jeremy Avigad [1, p. 10], “the words “constructive” and “intuitionistic”
are used today almost interchangeably.” Yves Lafont [14, p. 149] explains
that “[i]ntuitionistic logic is called constructive because of the correspondence
between proofs and algorithms,” so that intuitionistic implication is essential
for regarding intuitonistic logic as constructive. According to Paul Gilmore [13,
p. xiv ], the Disjunction Property and the Existence Property together are “the
hallmark property of an intuitionistic/constructive logic.” This conception of
constructivity (or constructiveness) has been challenged by David Nelson, who
in addition to keeping the intuitionistic conditional and desiring the disjunction
and existence properties suggested to require also the Constructible Falsity
Property (if ∼(A ∧B) is provable, then ∼A or ∼B is provable) and the dual of
the Existence Property, cf. Section 6.

Our third question does not make any sense if we assume intuitionistic logic
as the logic in question since the addition of LEM will collapse the logic into
classical logic, which is admittedly non-constructive. The situation is similar
in the case of Nelson’s constructive logics with strong negation. Indeed, for the
case with his N3, the addition of LEM with respect to the strong negation will
again collapse the logic into classical logic. Moreover, for the case with N4, the
addition of LEM with respect to the strong negation will not collapse the logic
into classical logic, but instead the resulting logic will be the three-valued logic,
for example known as CLuNs (cf. [4]), obtained by expanding the well-known
three-valued paraconsistent logic LP, by the following truth table:

A→B t b f
t t b f
b t b f
f t t t

6 This thesis is also known as Strawson’s thesis.
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In particular, the ∼-free fragment of CLuNs is classical, and thus the addition
of LEM indeed destroys the constructive features, including the intuitionistic
conditional, the Disjunction Property, and the Existence Property.

Note, however, that the proof of the collapse of N4 into CLuNs heavily
relies on the falsity condition for the conditional, and thus motivates our third
question to explore the effect of adding LEM to C, which has a falsity condition
different from that of N4. As we will show, the addition of LEM to a logic with
a constructive implication need not collapse into classical logic. Moreover, the
addition of LEM for atomic formulas need not prevent the Existence Property
and its dual form holding.

Based on these considerations, the paper is structured as follows. We first
revisit connexive logic C in §2. This is followed by §3 in which we introduce
the extension of C by LEM. We then discuss the first two questions in §4.
After these discussions at the level of propositional logic, we introduce, in §5,
the extension of QC, quantified C, obtained by adding LEM. We then discuss
the proof theory for QC and its extension in §6, and conclude the paper by a
summary and remarks on future directions in §7.

2 Revisiting C

The language L consists of a finite set {∼,∧,∨,→} of propositional connectives
and a countable set Prop of propositional variables which we denote by p, q,
etc. Furthermore, we denote the set of formulas defined as usual in L by Form,
a formula of L by A, B, C, etc. and a set of formulas of L by Γ, ∆, Σ, etc.

2.1 Semantics

The following semantics, introduced in [38], is obtained by making a simple
change to the standard semantics for Nelson’s logic N4.

Definition 2.1 A C-model for the language L is a triple ⟨W,≤, V ⟩, where W
is a non-empty set (of states); ≤ is a partial order on W ; and V ∶W ×PropÐ→
{∅,{0},{1},{0,1}} is an assignment of truth values to state-variable pairs with
the condition that i ∈ V (w1, p) and w1 ≤ w2 only if i ∈ V (w2, p) for all p ∈ Prop,
all w1,w2 ∈W and i ∈ {0,1}. Valuations V are then extended to interpretations
I of state-formula pairs by the following conditions:

● I(w,p) = V (w,p),
● 1 ∈ I(w,∼A) iff 0 ∈ I(w,A),
● 0 ∈ I(w,∼A) iff 1 ∈ I(w,A),
● 1 ∈ I(w,A ∧B) iff 1 ∈ I(w,A) and 1 ∈ I(w,B),
● 0 ∈ I(w,A ∧B) iff 0 ∈ I(w,A) or 0 ∈ I(w,B),
● 1 ∈ I(w,A ∨B) iff 1 ∈ I(w,A) or 1 ∈ I(w,B),
● 0 ∈ I(w,A ∨B) iff 0 ∈ I(w,A) and 0 ∈ I(w,B),
● 1 ∈ I(w,A→B) iff for all w1 ∈W : if w ≤ w1 and 1 ∈ I(w1,A) then 1 ∈ I(w1,B),
● 0 ∈ I(w,A→B) iff for all w1 ∈W : if w ≤ w1 and 1 ∈ I(w1,A) then 0 ∈ I(w1,B).
Finally, the semantic consequence is now defined as follows: Γ ⊧C A iff for all
C-models ⟨W,≤, I⟩, and for all w ∈W : 1 ∈ I(w,A) if 1 ∈ I(w,B) for all B ∈ Γ.
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Remark 2.2 Note that Nelson’s logic N4 is obtained by replacing the falsity
condition for implication by the following condition:

0 ∈ I(w,A→B) iff 1 ∈ I(w,A) and 0 ∈ I(w,B).

2.2 Proof System

We now turn to the proof system.

Definition 2.3 The axiomatic proof system C consists of the following axiom
schemata and a rule of inference, where A↔ B abbreviates (A→B) ∧ (B→A):

A→(B→A) (Ax1)

(A→(B→C))→((A→B)→(A→C)) (Ax2)

(A ∧B)→A (Ax3)

(A ∧B)→B (Ax4)

(C→A)→((C→B)→(C→(A∧B))) (Ax5)

A→(A ∨B) (Ax6)

B→(A ∨B) (Ax7)

(A→C)→((B→C)→((A∨B)→C)) (Ax8)

∼∼A↔ A (Ax9)

∼(A∧B)↔ (∼A∨∼B) (Ax10)

∼(A∨B)↔ (∼A∧∼B) (Ax11)

∼(A→B)↔ (A→∼B) (Ax12)

A A→B
B

(MP)

Finally, we write Γ ⊢C A if there is a sequence of formulas B1, . . . ,Bn,A, n ≥ 0,
such that every formula in the sequence B1, . . . ,Bn,A either (i) belongs to Γ;
(ii) is an axiom of C; or (iii) is obtained by (MP) from formulas preceding it
in sequence.

Remark 2.4 Note that if we replace (Ax12) by ‘∼(A→B) ↔ (A∧∼B)’, then
we obtain an axiomatization of Nelson’s logic N4.

We also note that the deduction theorem is provable.

Proposition 2.5 For any Γ ∪ {A,B} ⊆ Form, Γ,A ⊢C B iff Γ ⊢C A→B.

Proof. It can be proved in the usual manner in the presence of axioms (Ax1)
and (Ax2), given that (MP) is the sole rule of inference. ◻

2.3 Basic results and an observation

As expected, we have a soundness and completeness result, established in [38].

Theorem 2.6 ([38]) For any Γ ∪ {A} ⊆ Form, Γ ⊢C A iff Γ ⊧C A.

A highly unusual feature of C is non-trivial but inconsistent.

Proposition 2.7 For any A ∈ Form, ⊢C (A∧∼A)→A and ⊢C ∼((A∧∼A)→A).
Proof. The first item is (Ax3). For the second item, it will suffice to establish
⊢ (A∧∼A)→∼A in view of (Ax12) and (MP), but this is just an instance of
(Ax4). ◻

Note that the proof of inconsistency relies on very weak assumptions.
Indeed, even with an extremely weak relevant implication (cf. [26, p. 477]) and
the very weak conditional considered in [41], the above inconsistency result will
hold. This may motivate to address the question if the axiom (Ax12), or the
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falsity condition for implication from C, will always give rise to inconsistency
of the system. The short answer is: No.

Theorem 2.8 There is a consistent system with the axiom (Ax12).

Proof. Take the propositional language only with ∼ and → (without ∧), and
consider an axiomatic proof system with (Ax9), (Ax12), (MP), and any axioms
for → that only have an even number of occurrences of variables.

Then, we can see that this proof system is consistent. Indeed, we can take
the two valued matrix for classical logic, and interpret ∼ and → as classical
negation and classical biconditional, respectively. This clearly shows that the
proof system is indeed consistent. ◻

In the rest of this paper, we will take the propositional language L that
contains both conjunction and disjunction, and thus the inconsistency will be
part of the features enjoyed by the system.

3 An extension of C

We now turn to the main extension of C. For the semantics, we simply close
the gap.

Definition 3.1 A C3-model for the language L is a triple ⟨W,≤, V ⟩, where
W is a non-empty set (of states); ≤ is a partial order on W ; and V ∶ W ×
Prop Ð→ {{0},{1},{0,1}} is an assignment of truth values to state-variable
pairs with the condition that i ∈ V (w1, p) and w1 ≤ w2 only if i ∈ V (w2, p) for
all p ∈ Prop, all w1,w2 ∈ W and i ∈ {0,1}. Valuations V are then extended to
interpretations I of state-formula pairs by the same conditions as with C. The
semantic consequence ⊧C3 is defined in a similar manner.

Remark 3.2 Note that the persistence condition carries over to all formulas.

For the proof system, we add the law of excluded middle with respect to
the strong negation.

Definition 3.3 The axiomatic proof system for C3 is obtained by adding A∨
∼A, namely LEM, to the axiomatic proof system for C. We then define ⊢C3

in a similar manner.

As usual, the soundness part is rather straightforward.

Proposition 3.4 (Soundness) For Γ∪{A} ⊆ Form, if Γ ⊢C3 A then Γ ⊧C3 A.

Proof. We only note that the elimination of the gappy value in the semantics
guarantees that LEM is valid in all C3-models. ◻

For the completeness proof, we first introduce some standard notions.

Definition 3.5 Σ ⊆ Form is deductively closed iff if Σ ⊢ A then A∈Σ. The set
Σ is prime iff A∨B∈Σ implies A∈Σ or B∈Σ. Moreover, Σ is prime deductively
closed (pdc) if it is both. Finally, Σ is non-trivial if A /∈ Σ for some A.

The following two lemmas are well-known, and thus the proofs are omitted.

Lemma 3.6 If Σ /⊢ A, there is a non-trivial pdc ∆ such that Σ ⊆ ∆ and ∆ /⊢ A.
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Lemma 3.7 If Σ is pdc and A→B /∈ Σ, there is a non-trivial pdc Θ such that
Σ ⊆ Θ, A ∈ Θ and B /∈ Θ.

Now, we are ready to prove the completeness.

Theorem 3.8 (Completeness) For Γ∪{A}⊆Form, if Γ ⊧C3 A then Γ ⊢C3 A.

Proof. Suppose that Γ /⊢C3 A. Then by Lemma 3.6, there is a Π ⊇ Γ such
that Π is a pdc and A /∈ Π. Define the model A = ⟨X,≤, I⟩, where X = {∆ ∶
∆ is a non-trivial pdc}, ∆ ≤ Σ iff ∆ ⊆ Σ and I is defined thus. For every state
Σ and propositional variable p:

1 ∈ I(Σ, p) iff p ∈ Σ and 0 ∈ I(Σ, p) iff ∼p ∈ Σ

Note that A is indeed a C3-model since 1 ∈ I(Σ, p) or 0 ∈ I(Σ, p) holds for all
Σ and p in view of LEM.

We now show that the above definition holds for arbitrary formula, B:

1 ∈ I(Σ,B) iff B ∈ Σ and 0 ∈ I(Σ,B) iff ∼B ∈ Σ

This can be proved by a simultaneous induction on the complexity of B with
respect to the positive and the negative clause. 7 It then follows that A is a
counter-model for the inference, and hence that Γ /⊧C3 A. ◻

4 Questions 1 and 2 in view of C3

We now turn to address first two questions, raised in our introduction, in light
of the new system C3.

4.1 An answer to Question 1: C3 is a generalization of CN

In brief, our first question concerned the system CN defended and explored
by Cantwell in [6]. More specifically, we asked if we can replace the classical
material conditional by a constructive conditional.

Note first that from a semantic perspective, it is easy to see that C3 expands
positive intuitionistic propositional logic conservatively. Moreover, we have the
following result that justifies to claim that C3 is a generalization of CN.

Proposition 4.1 The extension of C3 by Peirce’s law is sound and complete
with respect to the semantics induced by the following matrix with t and b as
designated values. In other words, the extension is the system CN of Cantwell.

A ∼A
t f
b b
f t

A ∧B t b f

t t b f
b b b f
f f f f

A ∨B t b f

t t t t
b t b b
f t b f

A→B t b f

t t b f
b t b f
f b b b

Proof. For soundness, just note that every one-element model validates
Peirce’s law. For completeness, note first that the presence of Peirce’s law
makes the partial order on the canonical model trivial. More specifically, for
two non-trivial pdcs Σ and ∆, we obtain that Σ ⊆ ∆ only if ∆ ⊆ Σ. Indeed,

7 The proof is the same as the one for [25, Theorem 2] with an obvious change to be made
for the negative clause for the conditional.
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suppose for reductio that Σ ⊆ ∆ and that for some A0, A0 ∈ ∆ but A0 /∈ Σ.
Then, in view of Peirce’s law, we also have A∨(A→ B) as a derivable formula,
and thus we have A0 ∨ (A0 → B) ∈ Σ for arbitrary B. In view of A0 /∈ Σ and
that Σ is prime, we obtain (A0 → B) ∈ Σ. This together with Σ ⊆ ∆ implies
(A0 → B) ∈ ∆, and with A0 ∈ ∆, we obtain B ∈ ∆. But since B is arbitrary, ∆
will be trivial and this contradicts the assumption that ∆ is non-trivial.

We can then consider the submodel of the canonical model with X = {Π}
where Π ⊇ Γ such that Π is pdc and A /∈ Π, obtained in view of Lemma 3.6.
This completes the proof. ◻
Remark 4.2 Note that Grigory Olkhovikov, in [24], also introduced and dis-
cusses the above three-valued truth table for the conditional. Olkhovikov also
motivates the truth table by considering conditionals in natural language, but
with a different reading of the third value.

Remark 4.3 Compare the above result with C in which the addition of
Peirce’s law results in a four-valued logic, called MC (for material connex-
ive logic) in [39], induced by the matrix obtained by adding the following truth
table for implication in addition to the truth tables of FDE:

A→B t b n f

t t b n f
b t b n f
n b b b b
f b b b b

An expansion of MC by the Boolean complement is explored in [27].

Remark 4.4 In view of the above result, there will be intermediate logics
between C3 and CN, as well as C and MC. Then, recalling that intermediate
extensions of N3 and N4 (as well as N4�) are explored by Marcus Kracht
in [18] and Sergei Odintsov in [23] respectively, describing the intermediate
extensions of C3 and C is an interesting open problem.

4.2 An answer to Question 2: C3 gives us all if we are careful

We now turn to the second question of how much connexivity can be captured
through the present approach via a slightly different falsity condition. Our con-
siderations build on a list provided by Estrada-González and Ramı́rez-Cámara
in [12] which includes the following four theses that are contra-classical:

Aristotle ∼(∼A→ A), ∼(A→ ∼A);
Boethius (A→ B)→ ∼(A→ ∼B), (A→ ∼B)→ ∼(A→ B);
Aristotle 2nd ∼((A→ B) ∧ (∼A→ B));
Abelard ∼((A→ B) ∧ (A→ ∼B)).
Then, we first observe that systems C and C3 are not able to capture all of
the above four theses.

Proposition 4.5 Both Aristotle’s and Boethius’ theses are derivable in C and
C3. However, (i) C fails to include Aristotle’s second thesis and Abelard’s
thesis (this was mentioned already in [40,41]); (ii) C3 includes Abelard’s thesis
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but not Aristotle’s second thesis.

Proof. The first half, namely that C and C3 include Aristotle’s and Boethius’
theses as derivable formulas is well-known and immediate in view of (Ax12).
For the second half, we can make use of the truth tables.

● For the failures in C, it is enough to establish that the concerned theses are
not valid in MC. Now, take the four-valued truth tables for MC. Then, if
we assign values b and t to A and B respectively, Aristotle’s second thesis
receives the value f . Moreover, if we assign values t and n to A and B
respectively, Abelard’s second thesis receives the value n.

● For the cases of C3, we first observe that Aristotle’s second thesis is not valid
in CN. To this end, if we assign values b and t to A and B respectively, we
obtain the desired result. For the derivability of Abelard’s thesis, it is enough
to establish that (A→B)∨(A→∼B) is derivable in C3, and this follows by
LEM and (Ax1).

This completes the proof. ◻
The above results show that the move to C3 from C will allow us to capture

one more thesis, namely Abelard’s thesis. However, Aristotle’s second thesis
is not captured, but this is not the end of the story. This is because we may
consider another very natural conditional, ⇒, in C and C3 defined as follows:

A⇒ B ∶= (A→ B) ∧ (∼B → ∼A).
One of the obvious differences is that the contraposition rule holds for the
“strong implication” ⇒, which was not the case with →. More importantly, we
have the following result.

Theorem 4.6 All four theses listed above, formulated in terms of ⇒, are
derivable in C3. However, only Aristotle’s and Boethius’ theses, formulated
in terms of ⇒, are derivable in C.

Proof. We first check that Aristotle’s and Boethius’ theses, formulated in
terms of ⇒, are derivable in C, and thus also in C3. To this end, note that
the following equivalences are derivable in view of the definition of ⇒:

● (A⇒ ∼B)↔ ((A→ ∼B) ∧ (B → ∼A));
● ∼(A⇒ B)↔ ((A→ ∼B) ∨ (∼B → A));
● ∼(A⇒ ∼B)↔ ((A→ B) ∨ (B → A)).
Then, it is obvious that Aristotle’s theses are derivable by the last equivalence.
For Boethius’ theses, we need to check that the following holds in C:

● (A⇒ B)→ ∼(A⇒ ∼B);
● (A⇒ ∼B)→ ∼(A⇒ B).
But these are obvious in view of the above equivalences, and thus we obtain
Boethius’ theses in C and also in C3.

We now turn to check that Abelard’s thesis, formulated in terms of ⇒, is
derivable in C3. For this purpose, simply note that the thesis is equivalent
to ((A→∼B)∨(∼B→A))∨((A→B)∨(B→A)). Then, by looking at the first and
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the third disjuncts, we can see that the above formula is derivable since (A →
B) ∨ (A→ ∼B) is derivable in C3, as we observed in the previous proposition.

Similarly, for the case of Aristotle’s second thesis, it suffices to derive ((A→
∼B) ∨ (∼B → A)) ∨ ((∼A → ∼B) ∨ (∼B → ∼A)). This time, by looking at the
second and the fourth disjuncts, we can see that the above formula is derivable
for the same reason.

Finally, in order to see that Aristotle’s second thesis and Abelard’s thesis
are not derivable in C, it suffices to see that the above two formulas have a
counter-model ⟨W,≤, V ⟩ defined as follows:

● W ∶= {w0,w1,w2}, ≤∶= {⟨w0,w0⟩, ⟨w0,w1⟩, ⟨w0,w2⟩, ⟨w1,w1⟩, ⟨w2,w2⟩},
● V (w0, p)=V (w0, q)=V (w1, p)=V (w2, q)={} and V (w1, q)=V (w2, p)={1,0}.
This completes the proof. ◻
Remark 4.7 Note that all four theses, formulated in terms of ⇒, hold in
CN and MC. This is due to the fact that ∼(A ⇒ B) is equivalent to (A →
∼B)∨(∼B → A), an instance of the linearity axiom. Thus, for arbitrary formulas
A and B, we have ∼(A⇒ B) as valid since → in both CN and MC is classical.
This is in sharp contrast with C3 since we have /⊧C3 ∼(A ⇒ B). Indeed, we
can consider a counter-model ⟨W,≤, V ⟩ defined as follows:

● W ∶= {w0,w1,w2}, ≤∶= {⟨w0,w0⟩, ⟨w0,w1⟩, ⟨w0,w2⟩, ⟨w1,w1⟩, ⟨w2,w2⟩},
● V (w0, p)=V (w1, p)={0}, V (w0, q)=V (w2, q)={1}, V (w1, q)=V (w2, p)={1,0}.

We summarize our observations from this subsection in a table as follows:

C C3 MC CN
→ ⇒ → ⇒ → ⇒ → ⇒

Aristotle’s theses ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Boethius’ theses ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Aristotle’s second theses × × × ✓ × ✓ × ✓
Abelard’s theses × × ✓ ✓ ✓ ✓ ✓ ✓

Negated strong conditional × × × × × ✓ × ✓
In short, the contraposible strong implication ⇒ of C3 seems to be a very
interesting conditional, satisfying all four contra-classical theses, without
having the problematic-looking formula, i.e. ∼(A⇒ B), as a valid formula.

4.3 Beyond Question 2: Totally connexive logics

The four theses we focused on in the previous subsection are part of a bigger
list provided by Estrada-González and Ramı́rez-Cámara. Indeed, they also
considered the following desiderata on top of the four theses.

Positive Paradox of Implication /⊧ A→ (B → A);
Negative Paradox of Implication /⊧ A→ (¬A→ B);
Paradox of Necessity /⊧ A → (B → C) where A is a contingent truth and

B → C is a logical truth;
Simplification ⊧ (A ∧B)→ A, ⊧ (A ∧B)→ B;
Idempotence ⊧ (A ∧A)→ A, ⊧ A→ (A ∧A);
Kapsner-strong (i) A → ∼A is unsatisfiable and (ii) A → B and A → ∼B are
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not simultaneously satisfiable.

Estrada-González and Ramı́rez-Cámara then introduced the notion of totally
connexive logics as logics that satisfy all the desiderata, including the four the-
ses. Moreover, they left as an open problem whether there are totally connexive
logics, and if so then which is the minimal one (cf. [12, p. 348]).

In view of our observations in the previous section, there are three
candidates for totally connexive logics, namely C3, MC and CN, by looking
at the contraposible conditional ⇒. 8 Since both C3 and MC are subsystems
of CN, and since the above desiderata involve some invalidities, let us focus on
CN. Then, we obtain the following truth table for ⇒ in CN:

A⇒B t b f

t b f f
b b b f
f b b b

This truth table is not new, but was already introduced and discussed by Chris
Mortensen in [21] in a logic, later called M3V in [20]. Recall that M3V is
an expansion of LP obtained by adding the above conditional. Before adding
further remarks, we observe that CN and M3V are equivalent systems.

Proposition 4.8 CN and M3V are equivalent.

Proof. All connectives in M3V are definable in CN in view of the above
discussion. For the other half, we need to show that the non-contraposible
conditional of CN is definable in M3V. This can be checked by observing that
((A⇒ B) ∨B) ∧ ∼(A⇒ (∼(A⇒ B) ∧ (B ∧ ∼B))) defines → of CN. ◻

In fact, M3V is examined by Estrada-González and Ramı́rez-Cámara, and
is shown to satisfy all the desiderata except Kapsner-strong. Building on this
observation, we conclude that all three candidates enjoy the same status since
Simplification and Idempotence are easy to check for the contraposible condi-
tional of both C and C3.

For the Kapsner-strong condition, we wish to add a remark. We are fully
aware of Andreas Kapsner’s original motivation, argued in [17], as well as his
intended way of spelling out the details in a rather classical manner. 9 However,
if we are in the vicinity of FDE, then there are always at least two ways to
formalize classical notions since truth and non-falsity (or, falsity and non-truth)
are not necessarily equivalent. 10 In particular, the notion of satisfiability,
which plays the crucial role in the Kapsner-strong condition, can be formalized
as follows in M3V:

8 Actually, CN is one of the systems examined by Estrada-González and Ramı́rez-Cámara,
but with respect to the non-contraposible conditional →.
9 Recall that the original proposal of Kapsner in [17] was to call for strong connexivity,
and that notion encompasses not only the theses of Aristotle and Boethius, but also the
unsatisfiability clauses which we refer to as Kapsner-strong conditions following [12].
10For example, think of discussions on p− and q−consequence relations that have revived
recently through a series of papers by Pablo Cobreros, Paul Egré, Dave Ripley, and Robert
van Rooij (e.g. [7,8]).
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● A is positively satisfiable iff for some M3V-valuation V , 1 ∈ I(A).
● A is negatively satisfiable iff for some M3V-valuation V , 0 /∈ I(A).
Then, as observed by Estrada-González and Ramı́rez-Cámara, M3V is not
Kapsner-strong, if satisfiability is understood as positive satisfiability. However,
it is Kapsner-strong, if satisfiability is understood as negative satisfiability since
0 ∈ I(A⇒ B) for all M3V-valuations V and for all A and B.

For C3, we may formulate two kinds of satisfiability as follows.

● A is positively satisfiable iff for some C3-model M = ⟨W,≤, V ⟩, 1 ∈ I(w,A)
for some w ∈W .

● A is negatively satisfiable iff for some C3-model M = ⟨W,≤, V ⟩, 0 /∈ I(w,A)
for some w ∈W .

Then, C3 is Kapsner-strong if satisfiability is understood as negative satisfi-
ability. Indeed, for all C-models M = ⟨W,≤, V ⟩ and for all w ∈ W , we have
0 ∈ I(w,A⇒ ∼A) and 0 ∈ I(w, (A⇒ B) ∧ (A⇒ ∼B)).

Based on these observations, we conclude that there are totally connexive
logics, and examples include C3, MC and CN by looking at the contraposible
conditional. Note also that C3 enjoys the additional feature of being totally
connexive without all negated conditionals being valid (cf. Remark 4.7).

Remark 4.9 The key idea in this section has been to consider the contra-
posible conditional in C and its extensions. Then, in view of results reported
by Matthew Spinks and Robert Veroff, such as those in [33] and references
therein, establishing clear and neat connections between Nelson logics and rel-
evant logics, it is a natural and interesting question to explore the connections
between extensions of C and relevant logics as well.

Moreover, a deeper understanding of these connections may also give us
some new insights into the problem of finding sound and complete semantics
for systems introduced by Everett Nelson. More specifically, Nelson, in his PhD
thesis, introduced an axiomatic system of connexive logic, called NL by Edwin
Mares and Francesco Paoli in [19]. Then, the open problem, noted in [39], is
to find a sound and complete semantics for NL. Since one of the subsystems,
called NL− in [19], is close to the relevant logic DK, we may seek for a suitable
semantics via the contraposible conditional of one of the systems related to C3.

Before moving further, here is a table indicating the relations between ex-
tensions of C we discussed so far, with a comparison to extensions of N4.

MC
+LEMÐÐÐ→ CN(=M3V) HBe

+LEMÐÐÐ→ CLuNs(=RM3)

+
P
L

ÐÐ
→

+
P
L

ÐÐ
→

+
P
L

ÐÐ
→

+
LE

M

ÐÐÐ
→

C
+LEMÐÐÐ→ C3 N4

Note here that PL stands for Peirce’s law. Moreover, HBe is an expansion
of FDE explored by Arnon Avron in [3], and the equivalence of CLuNs and
RM3 is shown in [2, (a) of 2.10 Theorem] (Avron refers to CLuNs as RM⊃

3).
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5 An extension of QC

We will now consider the expansion of C and C3 to their quantified versions
QC and QC3 in a language without function symbols and equality.

We extend the propositional language L to a first-order language by adding
denumerably many individual variables, x, y, z, . . ., constants a, b, c, . . ., and
predicate symbols of finite arity. Terms (i.e, individual variables or constants)
are denoted by t, t1, t2, . . ., atomic formulas by P,Q, . . ., and arbitrary formulas
by A, B, etc.

5.1 Axiomatic proof systems

Definition 5.1 ([38, §4]) The schematic axioms and rules of QC are those of
C together with:

∼∃xA↔ ∀x∼A; ∼∀xA↔ ∃x∼A
A(t)→ ∃xA(x) (t is free for x in A); ∀xA(x)→ A(t) (t is free for x in A)
A→ B(x)

A→ ∀xB(x) (x not free in A); A(x)→ B
∃xA(x)→ B

(x not free in B)

Definition 5.2 The axiom schemata and rules of QC3 and QC3at are those
of QC together with LEM, resp. (LEMat): P ∨ ∼P , for atomic formulas P .

Deducibility in QC, QC3, and QC3at and the consequence relations ⊢QC,
⊢Q3C, and ⊢Q3Cat are defined in the usual way. In [38, Prop. 11] the axiomatic
system QC is shown to be complete with respect to a suitable Kripke semantics
by means of a faithful embedding into positive first-order intuitionistic logic.

Remark 5.3 Note that the embedding-based method is not available to us
here since it is not clear into which system we can embed QC3. Thus, we leave
this as an open problem.

Since the proof-theoretic aspect was not explored so far even for QC, we
here focus on sequent calculi for QC, QC3, and QC3at.

5.2 Sequent calculi

In this section, we define cut-free sequent calculi for QC, QC3, and QC3at.
The presentation is based on [22, §5.4] by Sara Negri and Jan von Plato, where
the sequent calculus G3i for intuitionistic predicate logic (without equality)
is extended by a rule, Gem-at, that captures LEMat. Whereas the addition
of Gem-at to the sequent calculus G3ip for intuitionistic propositional logic
results in a sequent system for classical propositional logic, the addition of Gem-
at to G3i results in a proof system for an extension of classical propositional
logic by the intuitionistic universal and particular quantifiers. Negri and von
Plato [22, p. 121] remark that the proof of admissibility of excluded middle
for arbitrary formulas for G3ip + Gem-at cannot be extended to quantified
formulas. We shall therefore add an excluded middle rule for arbitrary formulas,
Gem, to a sequent calculus G3C for QC. For the addition of Gem-at to G3C
we prove the Existence Property and a Dual Existence Property.

We first present the sequent calculus G3C for QC. Uppercase Greek letters
now stand for finite, possibly empty multisets of formulas, A,Γ stands for
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{A}⋓Γ, and ∆,Γ stands for ∆⋓Γ, where ⋓ is multiset union. Sequents are of
the form Γ⇒ A (⇒ is used in this way, hereafter, not for strong implication).

Definition 5.4 The rules of the calculus G3C are the following:
Logical axioms:

P,Γ⇒ P ∼P,Γ⇒ ∼P , for atomic formulas P
Logical rules:

A,B,Γ⇒ C

(A ∧B),Γ⇒ C
L∧ Γ⇒ A Γ⇒ B

Γ⇒ (A ∧B) R∧
A,Γ⇒ C B,Γ⇒ C

(A ∨B),Γ⇒ C
L∨ Γ⇒ A

Γ⇒ (A ∨B) R∨1
Γ⇒ B

Γ⇒ (A ∨B) R∨2

(A→ B),Γ⇒ A B,Γ⇒ C

(A→ B),Γ⇒ C
L→ A,Γ⇒ B

Γ⇒ (A→ B) R →

A(t/x),∀xA,Γ⇒ B

∀xA,Γ⇒ B
L∀ Γ⇒ A(y/x)

Γ⇒ ∀xA R∀ A(y/x),Γ⇒ B

∃xA,Γ⇒ B
L∃

Γ⇒ A(t/x)
Γ⇒ ∃xA R∃ A,Γ⇒ C

∼∼AΓ⇒ C
L∼∼ Γ⇒ A

Γ⇒ ∼∼A R∼∼
∼A,∼B,Γ⇒ C

∼(A ∨B),Γ⇒ C
L∼∨ Γ⇒ ∼A Γ⇒ ∼B

Γ⇒ ∼(A ∨B) R∼∨
∼A,Γ⇒ C ∼B,Γ⇒ C

∼(A ∧B),Γ⇒ C
L∼∧ Γ⇒ ∼A

Γ⇒ ∼(A ∧B) R∼∧1
Γ⇒ ∼B

Γ⇒ ∼(A ∧B) R∼∧2

∼(A→ B),Γ⇒ A ∼B,Γ⇒ C

∼(A→ B),Γ⇒ C
L∼→ A,Γ⇒ ∼B

Γ⇒ ∼(A→ B) R∼→

∼A(y/x),Γ⇒ B

∼∀xA,Γ⇒ B
L∼∀ Γ⇒ ∼A(t/x)

Γ⇒ ∼∀xA R∼∀
∼A(t/x),∼∃xA,Γ⇒ B

∼∃xA,Γ⇒ B
L∼∃ Γ⇒ ∼A(y/x)

Γ⇒ ∼∃xA R∼∃

where (i) in R∀ and in R∼∃, y must not occur free in Γ,∀xA, resp. in Γ,∼∃xA and

(ii) in L∃ and in L∼∀, y must not occur free in ∃xA,Γ,B, resp. in ∼∀xA,Γ,B.

Definition 5.5 The rules of the calculus G3C3, respectively G3C3at, are
those of G3C plus:

B,Γ⇒ A ∼B,Γ⇒ A

Γ⇒ A
Gem resp.

P,Γ⇒ A ∼P,Γ⇒ A

Γ⇒ A
Gem-at

for atomic formulas P .

6 Some basic proof-theoretic results

As in [22, Lemmas 4.1 and 4.1.2], one can prove a formal version of the principle
of renaming bound variables and a lemma showing that derivability of sequents
is preserved with the same derivation height if a term t is substituted for a free
variable x in a sequent Γ ⇒ A, provided that t is free for x in formulas from
Γ⇒ A. Also, one can easily show that for any formula A, sequents of the form
A,Γ⇒ A are provable in G3C (and hence in G3C3at and G3C3). Moreover,
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the versions of the sequent rules L→, L∼→, L∀, and L∼∃ without repetitions
of principal formulas are admissible in the calculi where they are present.

The proof of height-preserving admissibility of weakening and contraction

Γ⇒ B
Γ,A⇒ B

Wk
Γ,A⇒ B

Γ,A,A⇒ B
Ctr

in [22] can be adapted to G3C, G3C3at, and G3C3. In particular, one has
to show that the rules L∼∨, L∼∧, L∼∀ are height-preserving invertible and that
the rule L∼→ is height-preserving invertible for its second (right) premise.

Theorem 6.1 The Cut rule
Γ⇒ A A,∆⇒ B

Γ,∆⇒ B
Cut

is an admissible rule of G3C, G3C3at, and G3C3.

Proof. The proof follows the standard pattern presented in [22]. In particular,
if one of the premises of Cut is derived by an LEM rule, Cut with the same cut-
formula is permuted upwards to applications of Cut with a smaller cut-height.
The derivation

Γ⇒ A

B,A,∆⇒ C ∼B,A,∆⇒ C

A,∆⇒ C
Gem

Γ,∆⇒ C
Cut

for example, is replaced by

Γ⇒ A B,A,∆⇒ C

B,Γ,∆⇒ C
Cut

Γ⇒ A ∼B,A,∆⇒ C

∼B,Γ,∆⇒ C
Cut

Γ,∆⇒ C
Gem

This completes the proof (sketch). ◻
To every finite set of formulas Γ, there corresponds a unique multiset (with

no multiplicity of elements). If Γ is such a set, let ⋀Γ be a conjunction of all
formulas from the corresponding multiset. Conversely, to every finite multiset
Γ, there corresponds a unique set, which we will also denote by Γ.

Theorem 6.2 (Equivalence of proof systems) Let Γ be a finite set of
formulas and let ⋀∅ = (P → P ), for some fixed atomic formula P . Then
Γ ⊢QC3 A iff ⇒ ⋀Γ→ A is derivable in G3C3.

Proof. Left-to-right: It is enough to show that ⇒ A is derivable in G3C3 for
every theorem A of QC3 and that the inference rules preserve derivability. We
present two cases. For (LEM), we have

⋮
A⇒ A

A⇒ (A ∨ ∼A)

⋮
∼A⇒ ∼A

∼A⇒ (A ∨ ∼A)
⇒ (A ∨ ∼A)

where the vertical dots indicate routine derivations. For the ∀-rule of QC3 we
have
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⇒ A→ B(x)
⋮

A, (A→ B(x))⇒ B(x)
A⇒ B(x)

A⇒ ∀xB(x) R∀

for x not free in A.
Right-to-left: By induction on the height of derivations in G3C3 because
⇒ ⋀Γ → A is derivable in G3C3 iff Γ ⇒ A is. For axioms P,∆ ⇒ P and
∼P,∆⇒ ∼P we have P ∈ ∆⋓ {P}, respectively ∼P ∈ ∆⋓ {∼P}. For the induc-
tion steps we consider the sequent rules. In the case of Gem, by the induction
hypothesis we have B,Γ ⊢QC3 A and ∼B,Γ ⊢QC3 A. By (LEM) and reasoning
in positive intuitionistic propositional logic, as we can do in QC3, we obtain
Γ ⊢QC3 A. We present two more cases involving negation. Consider the rule
L∼∀. By the induction hypothesis, we have ∼A(y/x),Γ ⊢QC3 B, where y does
not occur free in ∃xA,Γ,B. We easily obtain ∼A(y/x) ⊢QC3 ⋀Γ→ B. By the ∃-
rule of QC3, respecting its side-condition, we obtain ∃x∼A(x) ⊢QC3 ⋀Γ→ B.
By axiom ∼∀xA(x) ↔ ∃x∼A(x), we get ∼∀A(x) ⊢QC3 ⋀Γ → B and then
∼∀A(x),Γ ⊢QC3 B. Consider the rule L∼→. Since the version of the rule
without repetition of the principal formula is admissible, we may assume
by the induction hypothesis that Γ ⊢QC3 A, and ∼B,Γ ⊢QC3 C. Since
A, (A → ∼B) ⊢QC3 ∼B, we successively obtain (A → ∼B),Γ ⊢QC3 ∼B and
(A → ∼B),Γ ⊢QC3 C. By (Ax12), we then get ∼(A → ∼B),Γ ⊢QC3 C. This
completes the proof. ◻

Proposition 6.3 The Disjunction Property and the Constructible Falsity
Property fail for G3C3at.

Proof. Both ⇒ (P ∨ ∼P ) and ⇒ ∼(P ∧ ∼P ) are derivable in G3C3at for
atomic formulas P . However, for no atomic formula P , both ⇒ P and ⇒ ∼P
are derivable with the aid of Gem-at. ◻

Theorem 6.4 The excluded middle rule Gem is admissible in G3C3at for
arbitrary quantifier-free formulas.

Proof. As in [22, Theorem 5.4.6], the proof is by induction on the length of
a formula D. The rules shown to be admissible may be used, Inv indicates
invertible rules, and Ind indicates applications of the induction hypothesis.
For atomic formulas we have Gem-at.
D is a disjunction (A ∨ B). Apply the induction hypothesis to the following
two derivations:

(A ∨B),Γ⇒ C

B,Γ⇒ C
Inv

(A ∨B),Γ⇒ C

A,Γ⇒ C
Inv

A,∼B,Γ⇒ C
Wk

⋮
(∼A ∧ ∼B)⇒ ∼(A ∨B) ∼(A ∨B),Γ⇒ C

(∼A ∧ ∼B),Γ⇒ C
Cut

∼A,∼B,Γ⇒ C
Inv

∼B,Γ⇒ C
Ind
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D is a conjunction (A ∧B). Apply the induction hypothesis to the following
two derivations:

(A ∧B),Γ⇒ C

A,B,Γ⇒ C
Inv

⋮
(∼A ∨ ∼B)⇒ ∼(A ∧B) ∼(A ∧B),Γ⇒ C

(∼A ∨ ∼B)⇒ C
Cut

∼A,Γ⇒ C
Inv

∼A,B,Γ⇒ C
Wk

B,Γ⇒ C

⋮
(∼A ∨ ∼B)⇒ ∼(A ∧B) ∼(A ∧B),Γ⇒ C

(∼A ∨ ∼B),Γ⇒ C
Cut

∼B,Γ⇒ C

D is an implication (A→ B): Apply the induction hypothesis to the following
two derivations

(A→ B),Γ⇒ C

B,Γ⇒ C
Inv

⋮
A,∼B ⇒ ∼(A→ B) ∼(A→ B),Γ⇒ C

A,∼B,Γ⇒ C
Cut

⋮
(A→ ∼B)⇒ ∼(A→ B) ∼(A→ B),Γ⇒ C

(A→ ∼B),Γ⇒ C
Cut

∼B,Γ⇒ C
Inv

∼A,∼B,Γ⇒ C
Wk

∼B,Γ⇒ C
Ind

D is of the form ∼(A ♯B), ♯ ∈ {∨,∧,→}: Similar to the previous cases because
(A ♯B),Γ⇒ C is derivable from ∼∼(A ♯B),Γ⇒ C.
D is a double negation ∼∼A:

⋮
A⇒ A

A⇒ ∼∼A ∼∼A,Γ⇒ B

A,Γ⇒ B
Cut

⋮
∼A⇒ ∼A
∼A⇒ ∼∼∼A ∼∼∼A,Γ⇒ A

∼A,Γ⇒ B
Cut

Γ⇒ B
Ind

This completes the proof. ◻

Theorem 6.5 (Existence Properties) If ⇒ ∃xA is derivable in G3C3at,
then so is ⇒ A(t/x) for some term t. If ⇒ ∼∀xA is derivable in G3C3at,
then so is ⇒ ∼A(t/x) for some term t.

Proof. We consider the first claim; the proof of the second claim is analogous.
Suppose⇒ ∃xA is derivable in G3C3at. Then the last step in the derivation is
either an application of R∃, and we are done, or it is an application of Gem-at :

P ⇒ ∃xA ∼P ⇒ ∃xA
⇒ ∃xA
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The same kind of case distinction applies to the derivations of P ⇒ ∃A and
∼P ⇒ ∃A. Since every derivation is a finite tree, the derivation of ⇒ ∃xA has
the shape

⋮ ⋮
∆1 ⇒ A(t1/x)

∆1 ⇒ ∃xA R∃ . . .
∆n ⇒ A(tn/x)

∆n ⇒ ∃xA R∃
⋱ ⋰

P ⇒ ∃xA ∼P ⇒ ∃xA
⇒ ∃xA

for some n ∈ N with 2 ≤ n, where every ∆i (1 ≤ i ≤ n) is a multiset of atomic
formulas or negated atomic formulas that disappear in the derivation of ⇒ ∃A
by applications of Gem-at only. Suppose now for reductio that for every term
t, the sequent ⇒ A(t/x) is not derivable in G3C3at. Then for any term t,
(P ∨∼P )⇒ A(t/x) is not derivable because ⇒ (P ∨∼P ) is derivable and Cut is
admissible. Hence either P ⇒ A(t/x) or ∼P ⇒ A(t/x) is not derivable because
otherwise (P ∨∼P )⇒ A(t/x) is derivable by applying L∨. Assume without loss
of generality that P ⇒ A(t/x) is not derivable. Then P, (Q ∨ ∼Q) ⇒ A(t/x)
is not derivable for any atomic formula Q because ⇒ (Q ∨ ∼Q) is derivable
and Cut is admissible. Therefore either P,Q ⇒ A(t/x) or P,∼Q ⇒ A(t/x) is
not derivable. Iterating this reasoning, we may conclude that for some i with
1 ≤ i ≤ n, ∆i ⇒ A(ti/x) is not derivable, contrary to the assumption that we
are considering a derivation of ⇒ ∃xA. ◻
Remark 6.6 It is known from work by Nobu-Yuki Suzuki [35] that the Dis-
junction Property and the Existence Property can come apart in intermediate
predicate logics, in particular, that in general the Existence Property does not
imply the Disjunction Property. The logic QC3at is an example of a naturally
arising and independently motivated logic for which the Disjunction Property
fails, whereas the Existence Property holds.

Remark 6.7 The proof of Theorem 6.5 uses classical logic in the meta-
language. In [36, p. 206 f.], Dirk van Dalen presents a constructive proof
of the Existence Property for intuitionistic predicate logic (without identity).
One may wonder whether a constructive proof of Theorem 6.5 is possible.

7 Concluding remarks

In this article, we introduced an extension of the connexive logic C from [38],
with the following three questions as our motivations.

Q1 Can we improve John Cantwell’s CN?
Q2 How much of the desiderata, listed by Estrada-González and Ramı́rez-

Cámara, can be met by the approach to connexivity à la C?
Q3 What is the relation between constructivity and LEM?

Our answers to these questions, in view of the new extension C3, are as follows.

A1 Cantwell’s classical conditional can be replaced by a constructive one.
A2 C3 is a totally connexive logic with respect to the strong implication.
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A3 LEM does not necessarily exclude properties that are usually regarded as
indicating constructivity.

These answers give rise to additional questions such as:

Q1’ Can we take other conditionals than the constructive conditional?
Q2’ Which system is minimal among the family of totally connexive logics?
Q3’ Are there any interesting variants of the Disjunction Property and the

Existence Property, discussed in [34], that hold in QC3 or related systems?

These questions, together with the open problems noted in Remarks 4.4, 4.9,
5.3 and 6.7 seem to show that there is a lot of room for further investigations.
We hope some readers will be motivated to join the authors to continue with
the development of connexive logics.
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