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Universitätsstraße 150, 44780, Bochum, Germany

Abstract

In “Yet another “choice of primitives” warning: Normal modal logics”, Lloyd Hum-
berstone discussed a failed axiomatization for the normal modal logic K with 3 as
the only primitive modal operator. More specifically, Humberstone observed that a
simple translation of the standard axiomatization for K, where all occurrences of the
necessity operator 2 are replaced by ¬3¬, will not be a complete axiomatization,
since 3p → 3¬¬p is not derivable. As a result, the emerging proof system resists
the standard Kripke semantics. However, to the best of the authors’ knowledge, no
semantics for the failed axiomatization of K is known in the literature. The aim of this
article is to offer the first sound and complete semantics for the failed axiomatization
of K by making use of a semantical framework suggested by John Kearns. In short,
Kearns’ semantics is a combination of non-deterministic semantics together with an
additional hierarchy of valuations. We will also discuss a small question left open by
Humberstone in the same paper. In view of the results presented in this article, we
hope to establish part of the versatility of Kearns’ semantics.

Keywords: Non-deterministic Semantics, Primitive Connectives, Normal Modal
Logics.

1 Introduction

Both in classical and nonclassical logics, there is a freedom in choosing the set
of primitive connectives. For example, in classical logic, one may take negation
and the conditional as primitive connectives, or take all, negation, conjunction,
disjunction and conditional as primitive. Or even one single connective known
as Sheffer’s stroke.

1 The work reported in this paper was initially supported by JSPS KAKENHI Grant Number
JP18K12183, and later by a Sofja Kovalevskaja Award of the Alexander von Humboldt-
Foundation, funded by the German Ministry for Education and Research. Some part of the
results were presented at Oberseminar Logik und Sprachtheorie in Tübingen in May 2019.
We would also like to thank the three referees for their careful reading and helpful comments,
suggestions and corrections that improved the paper. Email: Hitoshi.Omori@rub.de
2 Some of the observations of this article were presented at Trends in Logic XVIII in Milan
in September 2018, at the Kolloquium Philosophie & Linguistik in Göttingen in November
2018, at the Philosophisches Kolloquium in Leipzig in December 2018. DS would like to thank
the audience for their helpful comments and encouragements. Email: Daniel.Skurt@rub.de
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We also know, however, that sometimes some additional care is required. 3

For example, if we take negation and disjunction as primitive connectives, then
the following set of axioms and the rule of inference, due to Hilbert and Ack-
ermann, are complete with respect to the usual two-valued semantics, where
A→B abbreviates ¬A ∨B.

(A ∨A)→A

A→(A ∨B)

(A ∨B)→(B ∨A)

(A→B)→((C ∨A)→(C ∨B))

From A and A→B, infer B

Now, consider negation and conjunction as primitive connectives, and if we
simply translate the above set of axioms and the rule of inference with the
usual definitions A∨B =def. ¬(¬A∧¬B) and A→B =def. ¬(A∧¬B), then we
obtain the following:

¬((¬(¬A ∧ ¬A)) ∧ ¬A) ¬(A ∧ ¬¬(¬A ∧ ¬B)

¬(¬(¬A ∧ ¬B) ∧ ¬¬(¬B ∧ ¬A))

¬((¬(A ∧ ¬B)) ∧ ¬¬(¬(¬C ∧ ¬A) ∧ ¬¬(¬C ∧ ¬B)))

From A and ¬(A ∧ ¬B), infer B

However, as observed by Henryk Hiż in [8], the latter system is not a complete
axiomatization since we may observe that ¬(¬p ∧ p) is not derivable.

As for modal logics, it was shown by David Makinson in [14] that “the
decision whether to treat the zero-ary falsum operator as primitive or as defined,
affects the general structure of the lattice of all modal logics.” Moreover, in [9],
Lloyd Humberstone observed, among other things, that a simple translation of
the axiomatization for the modal logic K with the necessity (or “box”) as the
primitive connective, obtained by replacing the occurrences of “box” by “not
diamond not” will not be a complete axiomatization, since we may observe
that 3p→ 3¬¬p is not derivable. 4

Note, however, that a sound and complete semantics for the failed axioma-
tization of K, which we refer to as Kf , is not yet available in the literature, at
least to the best of the authors’ knowledge. 5

Based on these, the aim of this article is to fill in this gap and as a byproduct
show the versatility of John Kearns’ semantics, devised in [12]. 6 More specif-
ically, we will first introduce a sixteen-valued non-deterministic semantics (cf.
[1] for a survey) with an additional hierarchy on the set of all valuations for

3 For an interesting discussion related to this point, but from a wider perspective, see [7]
and references therein.
4 This is also reported by Richmond Thomason in a recent note [21] without any reference
to Humberstone’s observation. We will not discuss Thomason’s note since the eight-valued
matrix he introduces seems to be not fully articulated. Note that, as pointed out by Hum-
berstone, there is a four-valued matrix that will establish one of Thomason’s results (see
Remark 2.6 below).
5 This is not to say that there are no sound and complete Kripke semantics for the modal
logic K with a primitive possibility operator, see for example [2]. In brief, this axiomatization
makes use of one more axiom than just the K-axiom. We will return to this point later.
6 Kearns’ semantics was later applied to a larger family of normal modal logics in [16].
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Kf following Kearns. Then we will prove that Kf is sound and complete with
respect to our Kearns’ style semantics, now involving sixteen values, instead of
four values. 7 Once these are established, we will extend Kf with additional ax-
ioms in order to give a sound and complete semantics for a system we call S5f .
With this semantics we will deal with a problem left open by Humberstone,
namely showing the independence of 3¬¬p→ 3p from the failed axiomatiza-
tion.

2 Semantics and proof system

Our language L consists of the set {¬,3,→} of propositional connectives and
a countable set Prop of propositional parameters. Furthermore, we denote by
Form the set of formulas defined as usual in L. We denote formulas of L by A,
B, C, etc. and sets of formulas of L by Γ, ∆, Σ, etc.

2.1 Proof system

We first introduce the target system of this article, namely the system Kf . We
also define a subsystem that will be sound and complete with respect to the
non-deterministic semantics without the hierarchy.

Definition 2.1 First, the system Kf consists of the following axiom schemata
and rules of inference: 8

A→ (B → A) (Ax1)

(¬B→¬A)→(A→B) (Ax3)

A A→ B

B
(MP)

(A→(B→C))→((A→B)→(A→C)) (Ax2)

¬3¬(A→B)→(¬3¬A→¬3¬B) (LK)

A

¬3¬A
(RN)

We write `Kf
A for, there is a proof for A in Kf if there is a sequence of formulas

B1, . . . , Bn, A (n ≥ 0), such that every formula in the sequence either (i) is an
axiom of Kf ; or (ii) is obtained by (MP) or (RN) from formulas preceding it
in the sequence. Moreover, we define Γ `Kf

A iff for a finite subset Γ′ of Γ,
`Kf

C1 → (C2 → (· · · (Cn → A) · · · )) where Ci ∈ Γ′(1 ≤ i ≤ n).
Second, we define a subsystem of Kf , referred to as kf , which is obtained by

eliminating (RN) and adding the following schemata: 9

3¬¬(A→B)→(¬3¬A→3¬¬B) (Akf1)

¬3¬¬(A→B)→¬3¬¬B (Akf3)

3¬¬¬A→3¬A (Akf5)

¬3¬¬(A→B)→¬3¬A (Akf2)

3¬(A→B)→3¬B (Akf4)

3¬A→3¬¬¬A (Akf6)

We define Γ `kf A (A can be derived from Γ) iff there is a sequence of formulas
B1, . . . , Bn, A (n ≥ 0), such that every formula in the sequence either (i) is an

7 Sixteen values may remind us of the system SIXTEEN3 of Yaroslav Shramko and Heinrich
Wansing (cf. [18,19]). However, we could not establish any relation between their semantics
and our semantics.
8 Where (Ax1), (Ax2), (Ax3) and (MP) are a well-known axiomatization of classical proposi-
tional logic (cf. [20]) and, (LK) and (RN) are the K-axiom and rule of necessitation expressed
in terms of ¬ and 3.
9 We would like to thank one of the anonymous reviewers for pointing out the missing axioms.
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element of Γ (ii) is an axiom of kf ; or (iii) is obtained by (MP) from formulas
preceding it in the sequence.

Remark 2.2 It is rather easy to see that kf is a subsystem of Kf . Indeed, note
first that in Kf , we have the following rules in view of (LK), (MP) and (RN):

A→B

¬3¬A→¬3¬B
,

A→(B→C)

¬3¬A→(¬3¬B→¬3¬C)
.

Then, in order to see that (Akf1) is derivable in Kf , apply the second rule
to A→(¬B→¬(A→B)). For the rest, apply the first rule to ¬(A→B)→A,
¬(A→B)→¬B, B→(A→B), A→¬¬A and ¬¬A→A, respectively.

2.2 A detour: counter-model of Humberstone

Here, we will review the counter-model used by Humberstone, in [9], to establish
that 3A→ 3¬¬A is not derivable in Kf .

Definition 2.3 [Humberstone] A model for L is a triple 〈W,N, V 〉 in which
W is a set with ∅ 6= N ⊆W and V is a function assigning to each propositional
variable a subset of W . Given a model M = 〈W,N, V 〉 we define truth of a
formula A at a point u ∈W (M �u A) as follows:

• M �u p iff u ∈ V (p), if p ∈ Prop;
• M �u B → C iff M 6`u B or M �u C;
• M �u ¬B iff u ∈ N and M 6`u B;
• M �u 3B iff for some v ∈W :M �v B.

A formula A is true in the model M = 〈W,N, V 〉, (notation: M � A), just
in case for all u ∈ N , we have M �u A, and valid (notation: �H A, where H
stands for Humberstone) if it is true in every model.

Fact 2.4 (Theorem 2.1 in [9]) For all A ∈ Form, if `Kf
A then �H A.

Fact 2.5 (Corollary 2.2 in [9]) 6�H 3p→ 3¬¬p. 10

Proof. Consider a two-element model M0 = 〈W0, N0, V0〉, with W0 = {u, v}
and u 6= v, N0 = {u} and V0(p) = {v}. Now, we have M0 �u 3p, but
M0 6`u 3¬¬p. The latter follows since there is no element in W0, such that
¬¬p is true. Indeed, for u, we have u ∈ N but M0 6`u p, and for v, we have
M0 6`v ¬p, but v /∈ N . Therefore, M0 6`u 3p→ 3¬¬p. as desired. 2

Remark 2.6 Note that the above model M0 can be seen as a four-valued
matrix with its four elements being 1 = {u, v}, 2 = {u}, 3 = {v} and 4 = ∅,
and designated values 1 and 2. Truth tables for the connectives are as follows.

A ¬A 3A
1 4 1
2 4 1
3 2 1
4 2 4

A→B 1 2 3 4
1 1 2 3 4
2 1 1 3 3
3 1 2 1 2
4 1 1 1 1

10 Thus, Kf does not enjoy the replacement property, also known as self-extensionality. So,
if this property is crucial for modal logics (cf. [15]), then Kf is not a modal logic.
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Then, if we assign the value 3 to p, then 3p → 3¬¬p receives the value 4, as
desired. Note, however, that 3¬¬p → 3p will be verified in this model (note
that the above matrix can be found in [9, Figure 1]).

2.3 Semantics

We now turn to present the semantics for Kf . To this end, we first introduce
the basic Nmatrix which requires sixteen truth values.

Definition 2.7 A Kf-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1,T2,T3,T4, t1, t2, t3, t4, f1, f2, f3, f4,F1,F2,F3,F4},
(b) T = {T1,T2,T3,T4, t1, t2, t3, t4},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T
T2 f4 T
T3 F4 F
T4 f4 F

A ¬̃A 3̃A
t1 F1 T
t2 f1 T
t3 F1 F
t4 f1 F

A ¬̃A 3̃A
f1 t4 T
f2 T4 T
f3 t4 F
f4 T4 F

A ¬̃A 3̃A
F1 t1 T
F2 T1 T
F3 t1 F
F4 T1 F

A→̃B T13 T24 t13 t24 f13 f24 F13 F24

T13, T24 T13 T24 t13 t24 f13 f24 F13 F24

t13, t24 T13 T13 T13, t13 T13, t13 f13 f13 f13,F13 f13,F13

f13, f24 T13 T24 t13 t24 T13 T24 t13 t24

F13,F24 T13 T13 T13, t13 T13, t13 T13 T13 T13, t13 T13, t13

where
• T13 = {T1,T3}, T24 = {T2,T4}, t13 = {t1, t3}, t24 = {t2, t4},
• F13 = {F1,F3}, F24 = {F2,F4}, f13 = {f1, f3}, f24 = {f2, f4},
• F = {f1, f2, f3, f4,F1,F2,F3,F4}.

A kf-valuation in a Kf -Nmatrix M is a function v : Form→ V that satisfies the
following condition for every n-ary connective ∗ of L and A1, . . . , An ∈ Form:
v(∗(A1, . . . , An)) ∈ ∗̃(v(A1), . . . , v(An)). 11

Remark 2.8 Note that the above truth table for →̃ is making use of an un-
usual abbreviation. The full version is available in the Appendix.

Remark 2.9 This truth-table for implication can be seen as a generalization
of the truth-table for implication of the system K, presented in [16, Definition
43]. The similarities will become explicit in the definition of the canonical
model (cf. Definition 3.8 below).

Definition 2.10 A is a kf-consequence of Γ (Γ |=kf A) iff for all kf -valuation
v, if v(B) ∈ T for all B ∈ Γ then v(A) ∈ T . In particular, A is a kf-tautology
iff v(A) ∈ T for all kf -valuations v.

11 Note that the definition of kf -valuations is in the terminology of [16] called legal valuation,
which in turn is also called dynamic valuation in [1].
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Remark 2.11 Note that with Yuri V. Ivlev another logician considered non-
deterministic semantics for a language with modality (cf. [10,11]). He is, how-
ever, not dealing with normal modal logics but only fragments without the rule
of necessitation. Our system kf can therefore also be understood as a system
of modality in the sense of Ivlev. 12

Definition 2.12 Let v be a function v : Form→ V. Then,

• v is a 0th-level Kf-valuation if v is a kf -valuation.
• v is a m + 1st-level Kf-valuation iff v is an mth-level Kf -valuation and for

every sentence A, v(A)∈{T1,T2,T3,T4} holds if v′(A)∈T for every mth-
level Kf -valuation v′.

Based on these, we define v to be a Kf-valuation iff v is an mth-level Kf -
valuation for every m ≥ 0.

Definition 2.13 A is a Kf-tautology (|=Kf
A) iff v(A) ∈ {T1,T2,T3,T4} for

every Kf -valuation v.

Remark 2.14 The definition of Kf -valuations involves some complicated con-
struction. Hence, for the sake of simplicity, we will only focus on tautologies,
but not consequence relations with possibly non-empty premises for Kf , and
similarly for its extensions.

3 Soundness and completeness

We first prove the soundness, and then turn to the completeness result for both
kf and Kf . The proofs are variants of those in [16].

3.1 Soundness

The soundness for the kf consequence relation is rather straightforward.

Proposition 3.1 For all Γ ∪ {A} ⊆ Form, if Γ `kf A then Γ |=kf A.

Proof. It suffices to check that all axioms are kf -tautologies, and that the rule
of inference (MP) preserves the designated values. The details are spelled out
in the Appendix. 2

For the soundness of Kf , we need the following lemma.

Lemma 3.2 Assume that `Kf
A and that the length of the proof for A is m.

Then, for every mth-level Kf-valuation v, v(A) ∈ T .

Proof. By induction on the length m of the proof for `Kf
A. For the base, case

in which m = 1, A is one of the axioms. Since axioms are kf -tautologies, as
shown above, v(A) ∈ T for every 1st-level Kf -valuation. (Note that by defini-
tion, if a sentence is designated for every mth-level Kf -valuation, then it is also
designated for every m+1st-level Kf -valuation.) For the induction step, assume
that the result holds for proofs of the length m, and let B1, . . . , Bm, Bm+1(= A)
be the proof for A. Then, there are the following three cases:

12 For continuations of Ivlev’s approach, see for example [3,4,5]. For a little problem with
Ivlev’s original paper, see [16, §3.3].
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• If A is an axiom, then A is designated for every kf -valuation, and thus for
every m + 1st-level Kf -valuation as well.

• If A is obtained by applying (MP) to Bi and Bj(= Bi → A), then by
induction hypothesis, Bi and Bj are designated for every max{i, j}th-level
Kf -valuation, and thus for every mth-level Kf -valuation. By the truth table
for →, we obtain that A is also designated for every mth-level Kf -valuation.
Therefore, A is designated for every m + 1st-level Kf -valuation as well.

• If A is obtained by applying (RN) to Bi, then by induction hypothesis, Bi

is designated for every ith-level Kf -valuation. So, for every i + 1st-level Kf -
valuation, ¬3¬Bi, i.e. A is designated. Thus, A is designated for every
m + 1st-level Kf -valuation.

This completes the proof. 2

Once we have the lemma, soundness for Kf follows immediately.

Proposition 3.3 For all A ∈ Form, if `Kf
A then |=Kf

A.

Proof. Let the length of the proof for A be m. Then, by the above
lemma, A is designated for every mth-level Kf -valuation. Therefore, v(A) ∈
{T1,T2,T3,T4} for every m + 1st-level Kf -valuation v. Since Kf -valuations
are also m + 1st-level Kf -valuations, we obtain that A takes one of the values
T1,T2,T3,T4 for every Kf -valuation, as desired. 2

3.2 Completeness

We now turn to prove the completeness. First, we list some provable formulas,
without proofs, that will be used in the following proofs.

Proposition 3.4 The following formulas are provable in kf :

¬3¬A→(3¬B→3¬(A→B)) (1)

A→(¬B→¬(A→B)) (2)

(A→B)→((¬A→B)→B) (3)

A→(¬A→B) (4)

Second, we introduce some standard notions that will be used in the proofs.
In what follows, we let L be kf or Kf , or their extensions we consider in later
sections.

Definition 3.5 For Γ ⊆ Form, Γ is an L-consistent set iff Γ 6` A or Γ 6` ¬A for
all A ∈ Form. Γ is L-inconsistent otherwise.

Definition 3.6 For Γ ⊆ Form, Γ is maximal L-consistent set iff Γ is L-
consistent and any set of formulas properly containing Γ is L-inconsistent. If Γ
is maximal L-consistent set, then we say that Γ is a L-mcs.

We then obtain the following well-known lemma. As the proof is standard,
we will leave it to the reader.

Lemma 3.7 For any Σ ∪ {A} ⊆ Form, suppose that Σ 6`L A. Then, there is a
Π ⊇ Σ such that Π is a L-mcs.

We next define the canonical valuation. This will also give us an intuitive
reading of the sixteen values.
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Definition 3.8 For any Σ ⊆ Form, we define a function vΣ : Form → V as
follows.

vΣ(B) :=



T1 if Σ ` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
T2 if Σ ` ¬3¬B and Σ ` B and Σ ` 3B and Σ 6` 3¬¬B
T3 if Σ ` ¬3¬B and Σ ` B and Σ 6` 3B and Σ ` 3¬¬B
T4 if Σ ` ¬3¬B and Σ ` B and Σ 6` 3B and Σ 6` 3¬¬B
t1 if Σ 6` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
t2 if Σ 6` ¬3¬B and Σ ` B and Σ ` 3B and Σ 6` 3¬¬B
t3 if Σ 6` ¬3¬B and Σ ` B and Σ 6` 3B and Σ ` 3¬¬B
t4 if Σ 6` ¬3¬B and Σ ` B and Σ 6` 3B and Σ 6` 3¬¬B
f1 if Σ ` ¬3¬B and Σ 6` B and Σ ` 3B and Σ ` 3¬¬B
f2 if Σ ` ¬3¬B and Σ 6` B and Σ ` 3B and Σ 6` 3¬¬B
f3 if Σ ` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ ` 3¬¬B
f4 if Σ ` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ 6` 3¬¬B
F1 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ ` 3¬¬B
F2 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ 6` 3¬¬B
F3 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ ` 3¬¬B
F4 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ 6` 3¬¬B

Remark 3.9 Compared to the definition of the canonical valuation for K in
[16, Lemma 52], the number of truth values has doubled, since we are treating
3B and 3¬¬B separately.

Lemma 3.10 If Σ is a kf-mcs, then vΣ is a well-defined kf-valuation.

Proof. The details are spelled out in the Appendix. 2

Remark 3.11 By a careful examination, we also obtain that if Σ is a Kf -mcs,
then vΣ is a well-defined kf -valuation.

Based on these, we are now ready to prove the completeness of kf .

Theorem 3.12 For all Γ ∪ {A} ⊆ Form, if Γ |=kf A then Γ `kf A.

Proof. Suppose that Γ 6`kf A. Then by Lemma 3.7, we can construct a kf -mcs
Σ0 such that Γ ⊆ Σ0. In view of Lemma 3.10, we can define a kf -valuation
vΣ0 such that vΣ0(B) ∈ T for every B ∈ Γ and vΣ0(A) 6∈ T . Thus we have
Γ 6|=kf A, as desired. 2

For the completeness of Kf , we need one more lemma.

Lemma 3.13 Let Γ be a Kf-mcs. If vΓ is a kf-valuation, then vΓ is also an
mth-level Kf-valuation for every m ≥ 1, and thus a Kf-valuation.

Proof. By induction on m. For the base case, we prove that vΓ is 1st-level
Kf -valuation. Let A be a sentence that is designated for every kf -valuation.
Assume, for reductio, that 6`Kf

A. Then, in view of Remark 2.2, 6`kf A. Now,
by Lemma 3.7, there is a kf -mcs Σ such that Σ 6`kf A. Now let vΣ be the
kf -valuation generated by Σ. By the definition of vΣ, we have that Σ 6`kf A,
i.e. v(A) 6∈ T . But this contradicts our assumption that A is designated for
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every kf -valuation. Therefore, we have proved that `Kf
A. Then by (RN),

we obtain `Kf
¬3¬A. And by the definition of vΓ, we obtain that vΓ(A) ∈

{T1,T2,T3,T4}, as desired.
For the induction step, assume that vΓ is an mth-level Kf -valuation, and let

A be a sentence that is designated for every mth-level Kf -valuation. Assume,
for contradiction, that 6`Kf

A. Again, in view of Remark 2.2, we obtain 6`kf A.
Now by Lemma 3.7, there is a kf -mcs ∆ such that ∆ 6`kf A. Now let v∆ be
the kf -valuation generated by ∆. By induction hypothesis, we have that v∆

is an mth-level Kf -valuation. Moreover, by the definition of v∆, we have that
∆ 6`kf A, i.e. v∆(A) 6∈ T . But this contradicts our assumption that A is
designated for every mth-level Kf -valuation. Therefore, we have proved that
`Kf

A. Then by (RN), we obtain `Kf
¬3¬A. And by the definition of vΓ, we

obtain that vΓ(A) ∈ {T1,T2,T3,T4}, as desired. 2

We are now ready to prove completeness for Kf .

Theorem 3.14 For all A ∈ Form, if |=Kf
A then `Kf

A.

Proof. Suppose that 6`Kf
A. Then by Lemma 3.7, we have an Kf -mcs Σ0 such

that Σ0 6`Kf
A. In view of Remark 3.11, we can define a kf -valuation vΣ0

, and
by Lemma 3.13, this vΣ0 is also a Kf -valuation. Since we have vΣ0(A)6∈T , it is
also the case that vΣ0(A)/∈{T1,T2,T3,T4} (since vΣ0(A)∈{T1,T2,T3,T4}
implies that vΣ0

(A)∈T ). Thus we obtain 6|=Kf
A. 2

4 On extensions of failed K

We now have a semantics for Kf , and with this semantics at hand, we can turn
to discuss an open problem left by Humberstone in [9]. Let us first explain the
problem, and then outline our approach to the problem.

In [9, p.401], Humberstone pointed out that he was not successful in finding
an argument, possibly a variation of the above counter-model we reviewed
in Definition 2.3, establishing the unprovability of 3¬¬p → 3p. Hence this
problem was left open (see also [9, p.402]).

Note here that we can easily check that the Humberstone’s four-valued
semantics verifies both A→3A and 3A→¬3¬3A, namely axioms for S5. This
implies that the unprovability of 3¬¬p→ 3p is not due to the weakness of Kf .
In other words, the warning of choice of primitives carries over to extensions
of Kf , as well.

Based on this observation, we will mainly focus on extensions of Kf obtained
by adding axioms for S5, and analyse the open problem of Humberstone in some
detail. More specifically, we not only establish the unprovability of 3¬¬p →
3p, but also offer sound and complete semantics for extensions obtained by
adding one or both of 3A→ 3¬¬A and 3¬¬A→ 3A. In order to show how
the number of truth values will be reduced, we will also introduce an extension
of Kf obtained by adding an axiom for T.

4.1 From failed K to failed T

First, the extensions of Kf and kf are obtained as follows.



490 A Semantics for a Failed Axiomatization of K

Definition 4.1 The systems Tf and tf are obtained by adding A→3A to Kf

and kf , respectively. The consequence relations are defined as in Definition 2.1.

For the semantics, we introduce the following Nmatrix obtained by elimi-
nating truth-values of the Kf -Nmatrix.

Definition 4.2 A Tf-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F3,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T
t1 F1 T
F1 t1 T
F2 T1 T
F3 t1 F
F4 T1 F

A→̃B T1 t1 F1 F2 F3 F4

T1 T1 t1 F13 F24 F13 F24

t1 T1 T F13 F13 F13 F13

F1 T1 T T T T T
F2 T1 T T T T T
F3 T1 T T T T T
F4 T1 T T T T T

where F13 = {F1,F3}, F24 = {F2,F4} and F = {F1,F2,F3,F4}.
Remark 4.3 The definitions of tf -valuations, mth-level valuations and conse-
quence relations are exactly as in Definitions 2.7, 2.10, 2.12 and 2.13, with the
difference that only the value T1 is preserved in the hierarchy, respectively.

Proposition 4.4 (Soundness) For all Γ ∪ {A} ⊆ Form, (i) if Γ `tf A then
Γ |=tf A, and (ii) if `Tf

A then |=Tf
A.

Proof. The proof is similar to the proof for Proposition 3.3. 2

For the completeness, we need the following definition and lemma as before.

Definition 4.5 For any Σ ⊆ Form, we define a function vΣ : Form → V as
follows.

vΣ(B) :=



T1 if Σ ` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
t1 if Σ 6` ¬3¬B and Σ ` B and Σ ` 3B and Σ ` 3¬¬B
F1 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ ` 3¬¬B
F2 if Σ 6` ¬3¬B and Σ 6` B and Σ ` 3B and Σ 6` 3¬¬B
F3 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ ` 3¬¬B
F4 if Σ 6` ¬3¬B and Σ 6` B and Σ 6` 3B and Σ 6` 3¬¬B

Lemma 4.6 If Σ is a tf-mcs, then, vΣ is a well-defined tf-valuation.

Proof. The details of the proof are exactly as in Lemma 3.10, except that we
eliminate the values T2, T3, T4, t2, t3, t4, f1, f2, f3 and f4. 2

Now we can prove the completeness.

Theorem 4.7 (Completeness) For all Γ ∪ {A} ⊆ Form, (i) if Γ |=tf A then
Γ `tf A, and (ii) if |=Tf

A then `Tf
A.
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Proof. Similar to the proofs of Theorems 3.12 and 3.14, by making use of
Lemma 4.6 instead of Lemma 3.10. We leave the details to the reader. 2

4.2 From failed T to failed S5

We now turn to the failed S5 which will serve as the basic system in analyzing
Humberstone’s open problem. For the proof system, we add three more axioms.

Definition 4.8 The systems S5f and s5f are obtained by adding 33A→3A,
3¬¬3A→3A and 3A→¬3¬3A to Tf and tf , respectively. The consequence
relations `S5f and `s5f are defined as in Definition 2.1.

For the semantics, the number of truth values will remain the same, but we
eliminate non-determinacy for the truth-tables of 3.

Definition 4.9 An S5f-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F3,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F2 T1 T1

F3 t1 F4

F4 T1 F4

A→̃B T1 t1 F1 F2 F3 F4

T1 T1 t1 F13 F24 F13 F24

t1 T1 T F13 F13 F13 F13

F1 T1 T T T T T
F2 T1 T T T T T
F3 T1 T T T T T
F4 T1 T T T T T

where F13 = {F1,F3} and F24 = {F2,F4}.
Remark 4.10 The definitions of s5f valuations, mth-level valuations and con-
sequence relations are exactly as in the Definitions 2.7, 2.10, 2.12 and 2.13.

There is, however, a significant property of S5f which distinguishes it from
the other systems introduced in this article so far. Indeed, we do not need a
whole hierarchy of mth-level valuations, but only two levels are sufficient. We
leave the details to the interested reader and refer to [16, §4.4] in which this
was observed for S4 and S5.

Proposition 4.11 (Soundness) For all Γ∪ {A} ⊆ Form, (i) if Γ `s5f A then
Γ |=s5f A, and (ii) if `S5f A then |=S5f A.

Proof. We only note that the additional axioms are valid in the S5f -Nmatrix
in which all non-determinacies for 3 are eliminated. The rest is exactly as in
Proposition 4.4. 2

Theorem 4.12 (Completeness) For all Γ ∪ {A} ⊆ Form, (i) if Γ |=s5f A
then Γ `s5f A, and (ii) if |=S5f A then `S5f A.

Proof. We only note that the additional axioms allow us to conclude that if Σ
is a s5f -mcs, then vΣ is a well-defined s5f -valuation. The proof is by induction,
and we only check the case when B is of the form 3C.
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• If vΣ(C) = T1, then by IH, we obtain that Σ ` ¬3¬C and Σ ` C and Σ `
3C and Σ ` 3¬¬C. Then, by the third conjunct and 3A→¬3¬3A, we
have Σ ` ¬3¬3C, and this also implies Σ ` 3C, Σ ` 33C and Σ `
3¬¬3C. Then, by the definition of vΣ, this means vΣ(3C) = T1, as desired.
Other cases with vΣ(C)=t1, vΣ(C)=F1 and vΣ(C)=F2 are the same.

• If vΣ(C) = F3, then by IH, we obtain that Σ 6` ¬3¬C and Σ 6` C and Σ 6`
3C and Σ ` 3¬¬C. Then, by the third conjunct together with 33A→3A
and 3¬¬3A→3A, we have Σ 6` 33C and Σ ` 3¬¬3C, and we also have
Σ 6` ¬3¬3C and Σ 6` 3C. Then, by the definition of vΣ, this means
vΣ(3C) = F4, as desired. The other case with vΣ(C)=F4 is the same.

The rest of the proof is exactly as in Theorem 4.7. 2

4.3 On the open problem of Humberstone

We are now in the position to shift our interest to the problem left open
by Humberstone in [9]. The counter-model given by Humberstone, and de-
scribed in §2.2, invalidates one direction of the equivalence 3A↔3¬¬A, namely
3A→3¬¬A, while validating the other. We will now show that the above se-
mantics for S5f in the style of Kearns, with one more adjustment, helps us to
establish the unprovability of both 3p→3¬¬p and 3¬¬p→3p.

The adjustment we need to make is, to close the non-determinacies to ob-
tain a six-valued (deterministic) matrix that will do the job for our present
purposes. One may have expected that the above semantics will directly give
us the counter-model. Unfortunately, this is not the case, at least at the mo-
ment, due to the problem of analyticity in Kearns’ semantics (cf. [16, Remark
42]). 13 Still, the definition of the canonical valuation strongly suggests that we
should be able to give a counter-model, and by following Schiller Joe Scroggs
who explored the many-valued extensions of S5 in [17], we may aim at a deter-
ministic extension of our semantics for S5f .

Definition 4.13 A dS5f-matrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F3,F4},
(b) T = {T1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to V as follows:

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F2 T1 T1

F3 t1 F4

F4 T1 F4

A→̃B T1 t1 F1 F2 F3 F4

T1 T1 t1 F1 F4 F1 F4

t1 T1 T1 F1 F1 F1 F1

F1 T1 t1 T1 t1 T1 t1
F2 T1 T1 T1 T1 T1 T1

F3 T1 t1 T1 t1 T1 t1
F4 T1 T1 T1 T1 T1 T1

13 It is not yet proven that in Kearns’ semantics a partial valuation that falsifies a formula
can be extended to a full valuation that necessarily falsifies the formula, as well. See also [1]
for a discussion on analyticity related to non-deterministic semantics in general.
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We refer to the semantic consequence relation defined in terms of preservation
of the designated value with the above matrix as |=dS5.

Then, it is tedious but routine to check the following.

Lemma 4.14 For all A ∈ Form, if `S5f A then |=dS5 A.

We are now ready to answer Humberstone’s open problem.

Theorem 4.15 6`S5f 3p→3¬¬p and 6`S5f 3¬¬p→3p.

Proof. In view of the above lemma, it suffices to check that 6|=dS5 3p→3¬¬p
and 6|=dS5 3¬¬p→3p. For the first item, assign F2 to A of the dS5f -matrix.
Then, 3p receives the value T1 and 3¬¬p receives the value F4. Therefore,
3p→3¬¬p receives the non-designated value F4, as desired. For the second
item, assign F3 to p of the dS5f -matrix. Then, 3¬¬p receives the value T1 and
3p receives the value F4. Therefore, 3¬¬p→3p receives the non-designated
value F4, as desired. 2

Remark 4.16 In view of the definition of the canonical valuation, this result is
of course something expected. The emphasis here should be that some technical
devices are available to make the canonical valuation work as designed, thanks
to the semantic framework introduced by Kearns. This is, in turn, giving us
some new insight on the problem left open by Humberstone.

Let us now continue by introducing further extensions of S5f and s5f ob-
tained by adding one of the two formulas 3A→3¬¬A and 3¬¬A→3A.

Definition 4.17 Let S5fc and s5fc be the systems obtained by adding
3A→3¬¬A to S5f and s5f , respectively. Moreover, let S5fa and s5fa be the
systems obtained by adding 3¬¬A→3A to S5f and s5f , respectively. 14

For the semantics, we need to eliminate one value each that was used to
invalidate the additional axiom.

Definition 4.18 The Nmatrices for S5fc and S5fa are obtained from the Nma-
trix for S5f , by eliminating the values F2 and F3, respectively. More specifi-
cally, an S5fc-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F3,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F3 t1 F4

F4 T1 F4

A→̃B T1 t1 F1 F3 F4

T1 T1 t1 F13 F13 F4

t1 T1 T F13 F13 F13

F1 T1 T T T T
F3 T1 T T T T
F4 T1 T T T T

14 Note that additional subscripts c and a are for consequent and antecedent respectively,
indicating the position of the double negation in the additional axiom.
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where F13 = {F1,F3}.
Moreover, an S5fa-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F2,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):

A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F2 T1 T1

F4 T1 F4

A→̃B T1 t1 F1 F2 F4

T1 T1 t1 F1 F24 F24

t1 T1 T F1 F1 F1

F1 T1 T T T T
F2 T1 T T T T
F4 T1 T T T T

where F24 = {F2,F4}.
We can then establish soundness and completeness for the four new systems

introduced in this subsection. Indeed, all definitions, propositions and theorems
are exactly as in §4.1 and §4.2. More specifically, all proofs can be obtained
by slightly modifying the proofs of the mentioned subsections, by removing the
values F2 and F3, respectively. We safely leave the details for the interested
reader.

Remark 4.19 Note that we can strengthen Theorem 4.15 as follows: 6`S5fa
3p→3¬¬p and 6`S5fc 3¬¬p→3p. This is precisely because we can make use
of the submatrices of the six-valued dS5f -matrix introduced in Definition 4.13.

4.4 From failed S5 to full S5

As noted by Humberstone in [9, p.401], we obtain the standard normal modal
logic K if we extend Kf by adding 3A↔3¬¬A since this gives us the equivalence
¬¬3¬¬A↔3A which corresponds to the ¬2¬A↔3A used in [2, p.34]. Since
this observation also carries over to extensions of K, it is rather natural to
introduce the common extension of S5fa and S5fc obtained by adding the missing
direction.

Definition 4.20 The systems S53 and s53 are obtained by adding the axiom
scheme 3A↔3¬¬A to S5f and s5f , respectively.

For the semantics, seen from the S5f -Nmatrix, we need to eliminate both
values that were used to invalidate the additional axioms. Equivalently, we
obtain the same Nmatrix from the S5fa-Nmatrix and the S5fc-Nmatrix by elim-
inating the values that we used to invalidate the missing direction.

Definition 4.21 An S53-Nmatrix for L is a tuple M = 〈V, T ,O〉, where:

(a) V = {T1, t1,F1,F4},
(b) T = {T1, t1},
(c) For every n-ary connective ∗ of L, O includes a corresponding n-ary func-

tion ∗̃ from Vn to 2V \ {∅} as follows (we omit the brackets for sets):
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A ¬̃A 3̃A
T1 F4 T1

t1 F1 T1

F1 t1 T1

F4 T1 F4

A→̃B T1 t1 F1 F4

T1 T1 t1 F1 F4

t1 T1 T1, t1 F1 F1

F1 T1 T1, t1 T1, t1 T1, t1
F4 T1 T1, t1 T1, t1 T1, t1

The rest of the details towards soundness and completeness results will be
as before. Indeed, all definitions, propositions and theorems are exactly as in
§4.1 and §4.2, and all proofs can be obtained by slightly modifying the proofs
of the mentioned subsections, by removing both of the values F2 and F3.

Remark 4.22 A closer look at the definitions reveals that the Nmatrix of S53
and its definition of the canonical valuation are very similar to the ones for S5
given in [16]. In fact, the definitions of the canonical valuations are equivalent
since in view of the additional axiom, the distinction between 3B and 3¬¬B
is redundant. For the Nmatrix, however, this is slightly different since the one
in [16], taken from [12], has the following truth-table for →̃.

A→̃B T1 t1 F1 F4

T1 T1 t1 F1 F4

t1 T1 T1, t1 F1 F1

F1 T1 T1, t1 T1, t1 t1
F4 T1 T1 T1 T1

Indeed, there are some additional non-determiniacies in our S53-Nmatrix:

• F1→̃F4 will be t1 by having ¬3¬(A→ B)→ (3A→ 3B) as derivable;
• F4→̃x for all x∈V will be always T1 by having 3¬(A→B)→3A as derivable.

However, at the level of S53-valuations, where some valuations will be ruled
out, the formulas above will be validated, and thus the two semantics, the
one for S53 given above, and the one for S5, introduced in [12] are indeed
equivalent.

5 Concluding remarks

Let us now briefly summarize our main results of this paper, and then discuss
a few items for future directions.

Main results Building on the observation of Humberstone about the choice
of primitives in [9], we aimed at offering a sound and complete semantics for
the failed axiomatization of the modal logic Kf , a variant of the modal logic K
with the possibility operator as the only primitive modal operator, but without
¬¬3¬¬A↔3A, the key axiom to obtain an axiomatization based on 3. The
resulting semantics is based on a sixteen-valued non-deterministic semantics
which can be seen as a variant of the semantics devised by Kearns in [12].

We also discussed an open problem left by Humberstone in [9], showing
the independence of not only 3A → 3¬¬A but also 3¬¬A → 3A from S5f
(failed axiomatization of S5), therefore also from Kf . To this end, we devised a
semantics for S5f based on a six-valued non-deterministic semantics, and used
a deterministic extension to establish the unprovability of both 3p → 3¬¬p
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and 3¬¬p→ 3p in one single matrix.
The extensions of Kf we discussed in this article can be ordered, from left

to right by deductive strength, in the following way:

S5fc

S5f S53

S5fa

TfKf

Note that Humberstone also specifically asked for a counter-model for 3¬¬A→
3A that is closer to his own counter-model we revisited in Definition 2.3.
There is a question of how to precisify the notion of closeness to Humberstone’s
counter-model, but there is one possible answer due to Xuefeng Wen presented
in [23, p.71], independently of Humberstone’s question. 15 More specifically,
Wen’s model modifies the standard model M = 〈W,R, V 〉 for the modal logic
K by changing the usual truth condition for 3 as follows.

M, x 
 3A iff A=¬B and for some y ∈W,xRy and M, y 6
 B.

Then, we may easily observe that 3¬¬p→ 3p fails in a model with W = {w},
R = {(w,w)} and V (p) = {w}. Note, however, that 3A → 3¬¬A is valid in
the model suggested by Wen. We therefore leave the task to explore the exact
relations between Humberstone’s counter-model, Wen’s counter-model and our
model, for interested readers.

Future directions (I): a systematic study on extensions of failed K
Since our motivation came from Humberstone’s interesting observations re-
ported in [9], we only focused on extensions of Kf that were crucial and helpful
for our observations. However, this does not exclude a more systematic study
of extensions of Kf . We will here offer a sketch of some of the facts that seem
to suggest that the landscape of the extensions of Kf may look quite different
from the extensions of K.

First, it is well known that in considering extensions of K, there are two
equivalent formulations for many cases. For example, additions of 2A → A
and A → 3A will both give rise to the modal logic T. This will no longer be
the case for extensions of Kf . Indeed, as we observed in §4.1, the extension of
Kf by A → 3A was characterized by a semantics obtained by eliminating ten
values from the semantics for Kf . However, if we extend Kf by ¬3¬A → A,
then we can only eliminate eight values.

Something similar happens to D-like systems when we add ¬3¬A → 3A
and ¬3¬A→ 3¬¬A to Kf . More specifically, the former requires elimination of
six values whereas the latter only requires to eliminate four values. Moreover,
there will be a deviation from the usual picture in the sense that Kf plus
¬3¬A → A, a T-like system, and Kf plus ¬3¬A → 3A, D-like system, are
incomparable. Indeed, we may establish that ¬3¬A → 3A is unprovable in
the first system and ¬3¬A→ A is unprovable in the second system in a similar

15 Our sincere thanks go to one of the anonymous referees for pointing this out.



Omori and Skurt 497

manner as we did in Theorem 4.15. We can then again order the extensions of
Kf , up to Tf , from left to right by deductive strength, in the following way:

Kf + ¬3¬A→A

Kf + ¬3¬A→3¬¬A Tf

Kf + ¬3¬A→3A

Kf

Therefore, it can be safely said, the class of extensions for Kf looks quite
different than usually for normal modal logics.

Future directions (II): Failed axiomatizations of tense logics One of
the examples from life for failed axiomatizations, as Humberstone put it in [9],
is that of tense logics. In particular, he discussed the system Kt, given by S. K.
Thomason in [22], introduced as a bimodal logic with two primitive possibility
operators. It was shown by Humberstone that the axiomatization for Kt fails to
be complete with respect to Kripke semantics, by a similar argument building
on a variation of his own counter-model.

In light of the results of this article, we believe that it is possible to construct
sound and complete Kearns’ semantics for Kt or even its extensions. We have
not spelled out the details, but probably an Nmatrix with 128 truth-values
suffices to prove the desired result for Kt, and for certain extensions of Kt,
the number of truth-values should be reduced significantly. The key idea for
constructing such semantics, lies in the canonical model construction, where we
would need to add conditions for the interaction of the two modal operators.

Future directions (III): Some critical reflections on Kearns’ semantics
Finally, we left out an important question raised by readers of earlier versions
of this article, the question whether this semantics is of any philosophical value.
At the moment we are far away from claiming any philosophical significance ,
unless we follow Kearns’ discussion (cf. [13]). In the end, we fully agree with
B. J. Copeland in [6, p. 400], when he writes:

“Philosophically significant semantical arguments can be yielded only by
philosophically significant semantics, not by merely formal model theory.”

Thus, it remains as a (huge) challenge to explore if we can turn Kearns’ se-
mantics into a philosophically significant semantics.

Appendix

In this appendix, we spell out the details left open in the text and give the full
truth-table of the Kf conditional from Definition 2.7.

Details of Proposition 3.1 We will only prove the case for (LK),
since the proofs for the other modal axioms as well as the classical
axioms and (MP) are similar. Now, suppose that for a kf -valuation
v(¬3¬(A→B)→(¬3¬A→¬3¬B)) /∈ T . Then, this implies (1) v(¬3¬(A →
B)) ∈ T , (2) v(¬3¬A) ∈ T and (3) v(¬3¬B) /∈ T . Now, we can see that
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three conditions imply the following, respectively:

(1) then v(3¬(A→ B)) /∈ T
then v(¬(A→ B)) ∈ {T3, t3,T4, t4,F3, f3,F4, f4}
then v(A→ B) ∈ {T1,T2,T3,T4, f1, f2, f3, f4}

(2) then v(3¬A) /∈ T
then v(¬A) ∈ {T3, t3,T4, t4,F3, f3,F4, f4}
then v(A) ∈ {T1,T2,T3,T4, f1, f2, f3, f4}

(3) then v(3¬B) ∈ T
then v(¬B) ∈ {T1, t1,T2, t2,F1, f1,F2, f2}
then v(B) ∈ {t1, t2, t3, t4,F1,F2,F3,F4}

By looking at the truth tables, this is not possible.

Proof of Lemma 3.10 Note first that vΣ is well-defined. The desired result
can be proved by induction on the number n of connectives.
(Base): For atomic formulas, this is obvious in view of the definition of vΣ.
(Induction step): We split the cases based on the connectives.
Case 1. If B = ¬C, then we have sixteen cases of which we will prove four.

• If vΣ(C) ∈ {T2,T4}, then by IH, we obtain that Σ ` ¬3¬C and Σ `
C and Σ 6` 3¬¬C. From this, we immediately get Σ ` ¬3¬¬C and Σ 6`
¬C and Σ 6` 3¬C and Σ 6` 3¬¬¬C. Then, by the definition of vΣ, this
means vΣ(¬C) = f4, as desired.

• If vΣ(C) ∈ {f1, f3}, then by IH, we obtain that Σ ` ¬3¬C and Σ 6`
C and Σ ` 3¬¬C. From this, we immediately get Σ 6` ¬3¬¬C and Σ `
¬C and Σ 6` 3¬C and Σ 6` 3¬¬¬C. Then, by the definition of vΣ, this
means vΣ(¬C) = t4, as desired.

The other cases are similar and left to the reader.

Case 2. If B = 3C, then we can deal with sixteen cases by splitting into the
following two cases.

• If vΣ(C) ∈ {Ti, ti, fi,Fi} with i ∈ {1, 2}, then by IH, we obtain that Σ ` 3C.
By the definition of vΣ, we obtain vΣ(3C) ∈ T , as desired.

• If vΣ(C)∈{Ti, ti, fi,Fi} with i∈{3, 4}, then by IH, we obtain that Σ 6` 3C.
By the definition of vΣ, we obtain vΣ(3C) 6∈ T , i.e. vΣ(3C) ∈ F , as desired.

Case 3. If B = C → D, then we have 256 different cases, which can be reduced
to eighteen of which will prove four.

• If vΣ(D) ∈ {T1,T3}, then by IH, we obtain that Σ ` ¬3¬D and Σ `
D and Σ ` 3¬¬D. From the first conjunct and (Akf4) we get Σ ` ¬3¬(C →
D). The second conjunct and (Ax1) gives us Σ ` C → D and by the third
conjunct together with (Akf3) we have Σ ` 3¬¬(C → D). Then, by the
definition of vΣ, this means vΣ(C → D) ∈ {T1,T3}, as desired.

• If vΣ(C) ∈ {F1,F2,F3,F4} and vΣ(D) ∈ {t1, t2, t3, t4,F1,F2,F3,F4},
then by IH, we obtain that Σ 6` ¬3¬C and Σ 6` C and Σ 6` ¬3¬D. From the
second conjunct together with (Ax1) and (Ax3) we infer Σ ` C → D. And
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the first conjunct together with (Akf2) gives us Σ ` 3¬¬(C → D). Then, by
the definition of vΣ, this means vΣ(C → D) ∈ {T1,T3, t1, t3}, as desired.

• If vΣ(C) ∈ {t1, t2, t3, t4} and vΣ(D) ∈ {f1, f2, f3, f4}, then by IH, we obtain
that Σ 6` ¬3¬C and Σ ` C and Σ ` ¬3¬D and Σ 6` D. The third conjunct
together with (Akf4) gives us Σ ` ¬3¬(C → D), while the first conjunct
together with (Akf2) gives us Σ ` 3¬¬(C → D). We also obtain Σ 6` C → D
from the second and fourth conjunct together with (2) from Proposition 3.4.
Then, by the definition of vΣ, this means vΣ(C → D) ∈ {f1, f3}, as desired.

• If vΣ(C) ∈ {T1,T2,T3,T4} and vΣ(D) ∈ {f2, f4}, then by IH, we obtain
that Σ ` ¬3¬C and Σ ` C and Σ ` ¬3¬D and Σ 6` D and Σ 6` 3¬¬D.
The third conjunct together (Akf4) gives us Σ ` ¬3¬(C → D). From the
second and forth conjunct together with (2) from Proposition 3.4 we obtain
Σ 6` (C → D). And (Akf1), together with the first and the last conjuncts,
gives us Σ 6` 3¬¬(C → D). Then, by the definition of vΣ, this means
vΣ(C → D) ∈ {f2, f4}, as desired.
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Truth-table for the conditional in Definition 2.7
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[8] Hiż, H., A warning about translating axioms, The American Mathematical Monthly 65

(1958), pp. 613–614.
[9] Humberstone, L., Yet another “choice of primitives” warning: Normal modal logics,

Logique et Analyse 185–188 (2004), pp. 395–407.
[10] Ivlev, Y. V., A semantics for modal calculi, Bulletin of the Section of Logic 17 (1988),

pp. 114–121.
[11] Ivlev, Y. V., “Modal logic. (in Russian),” Moskva: Moskovskij Gosudarstvennyj

Universitet, 1991.
[12] Kearns, J., Modal Semantics without Possible Worlds, Journal of Symbolic Logic 46

(1981), pp. 77–86.
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