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Abstract

A many-valued modal logic with connectives interpreted in the ordered additive group
of real numbers is introduced as a modal counterpart of the one-variable fragment of
a (monadic) first-order real-valued logic. It is shown that the logic is decidable and
admits an interpretation of the one-variable fragment of first-order  Lukasiewicz logic.
Completeness of an axiom system for the modal-multiplicative fragment is established
via a Herbrand theorem for its first-order counterpart. A functional representation
theorem is then proved for a class of monadic lattice-ordered abelian groups and used
to establish completeness of an axiom system for the full logic.
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1 Introduction

Many-valued modal logics with connectives interpreted in the ordered additive
group of real numbers have been studied in a wide range of different settings.
For example, modal logics based on the semantics of  Lukasiewicz logic with
truth values in the real unit interval have been considered as the basis for
fuzzy description logics (see, e.g., [2, 21, 29]), logics for reasoning about belief
and probabilities (see, e.g., [16–18,20]), a  Lukasiewicz mu-calculus [25], and as
a fragment of continuous logic [4]. Such logics have also been studied from a
purely algebraic perspective (see, e.g., [9,11,14,23]) and appear in the guise of
lattice-ordered groups (`-groups, for short) with a (co-)nucleus in the study of
semantics for substructural logics (see, e.g., [19,26]). The appeal of these logics
is clear: they make use of familiar arithmetical operations on the real numbers
and well-studied computational methods (e.g., linear programming), and they
relate to groups, arguably the most fundamental structures of classical algebra.

In [15], a minimal real-valued modal logic K(A) was defined as an extension
of Abelian logic, the logic of abelian `-groups, introduced independently in [24]
as a relevant logic and [8] as a comparative logic. Among the advantages of
focussing on modal extensions of Abelian logic are that the language is rich
enough to interpret other logics (e.g., modal extensions of  Lukasiewicz logic),

1 This research was supported by Swiss National Science Foundation grant 200021 184693.
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(B) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(C) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
( I ) ϕ→ ϕ
(A) ((ϕ→ ψ)→ ψ)→ ϕ

(+1) ϕ→ (ψ → (ϕ+ ψ))
(+2) (ϕ→ (ψ → χ))→ ((ϕ+ ψ)→ χ)
(0 1) 0
(0 2) ϕ→ (0→ ϕ)
(∧1) (ϕ ∧ ψ)→ ϕ
(∧2) (ϕ ∧ ψ)→ ψ
(∧3) ((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ))
(∨1) ϕ→ (ϕ ∨ ψ)
(∨2) ψ → (ϕ ∨ ψ)
(∨3) ((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ)

ϕ ϕ→ ψ

ψ
(mp)

ϕ ψ

ϕ ∧ ψ (adj)

Fig. 1. An Axiom System for Abelian Logic

the semantics are based directly on structures studied intensively in algebra
and computer science, and there exists a natural separation between the group
(multiplicative) and lattice (additive) fragments of the logics. Indeed, in [15],
a sequent calculus, an axiom system, and a complexity result were obtained
for the modal-multiplicative fragment of K(A) as first steps towards addressing
the corresponding (much more challenging) problems for the full logic.

In this paper, we introduce a real-valued modal logic S5(A) as the modal
counterpart of the one-variable fragment of (monadic) first-order Abelian logic.
It is easily proved that S5(A) is decidable and admits an interpretation of the
one-variable fragment of first-order  Lukasiewicz logic axiomatized in [28]. The
main contribution of the paper lies rather with the two distinct methods used
to establish completeness results. First, we make use of a Herbrand theorem for
the first-order counterpart of S5(A) and basic facts from linear programming
to give a syntactic completeness proof for an axiomatization of the modal-
multiplicative fragment. For an axiomatization of the full logic, we give an
algebraic completeness proof using monadic abelian `-groups, which, similarly
to monadic Heyting algebras (see [5, 7]) and MV-algebras (see [9, 11,14]), may
be viewed as abelian `-groups with certain “relatively complete” subalgebras.
We adapt a method used in [9] to prove a functional representation theorem for
monadic MV-algebras to obtain a similar theorem for monadic abelian `-groups,
and then establish completeness with respect to the real-valued semantics via
a partial embedding lemma for linearly ordered abelian groups.
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2 A Real-Valued Monadic Logic

In this section, we introduce a many-valued modal logic defined over the ordered
abelian group R = 〈R,min,max,+,−, 0〉 and prove a Herbrand theorem for the
corresponding one-variable fragment of a (monadic) first-order Abelian logic.

Let LA be a propositional language with binary connectives +, →, ∧, and
∨, and a constant 0, where ¬ϕ := ϕ → 0, ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ),
0ϕ := 0, and (n+ 1)ϕ := ϕ+ (nϕ) (n ∈ N). Let us also denote by Fm(L) the
set of formulas for any propositional language L over a countably infinite set of
variables {pi | i ∈ N}. An axiomatization of Abelian logic — a single-constant
version of multiplicative additive intuitionistic linear logic extended with the
axiom schema (A) — is presented in Fig. 1 that is complete with respect to
both the logical matrix 〈R,R≥0〉 and the variety of abelian `-groups (defined
in Section 5).

Now let L2
A be LA extended with a unary connective 2, where 3ϕ := ¬2¬ϕ.

An S5(A)-model is an ordered pair M = 〈W,V 〉 consisting of a non-empty set
W and a function V : {pi | i ∈ N} × W → R such that for each i ∈ N the
function Vi : W → R; w 7→ V (pi, w) is bounded 2 ; V is then extended to the
function V : Fm(L2

A)×W → R as follows:

V (0, w) = 0 V (ϕ ∧ ψ,w) = min(V (ϕ,w), V (ψ,w))

V (ϕ+ ψ,w) = V (ϕ,w) + V (ψ,w) V (ϕ ∨ ψ,w) = max(V (ϕ,w), V (ψ,w))

V (ϕ→ ψ,w) = V (ψ,w)− V (ϕ,w) V (2ϕ,w) =
∧
{V (ϕ, u) | u ∈W}.

By calculation, also

V (¬ϕ,w) = −V (ϕ,w) and V (3ϕ,w) =
∨
{V (ϕ, u) | u ∈W}.

A formula ϕ ∈ Fm(L2
A) is said to be valid in M if V (ϕ,w) ≥ 0 for all w ∈ W .

If ϕ is valid in all S5(A)-models, it is called S5(A)-valid, written |=S5(A) ϕ.
The logic S5(A) corresponds (as expected) to the one-variable fragment

of a (monadic) first-order logic. Consider a first-order language with unary
predicate symbols P0, P1, . . . and constants c0, c1, . . .. We denote by Fm the
set of first-order formulas for this language defined using the propositional
connectives of LA and the universal quantifier ∀ over a countably infinite set
of object variables, defining (∃x)α := ¬(∀x)¬α. For convenience, we also often
write c̄ or x̄ to denote an n-tuple of constants or variables, and, given c̄ =
c1, . . . , cn and d̄ = d1, . . . , dm, let d̄ ⊆ c̄ stand for {d1, . . . , dm} ⊆ {c1, . . . , cn}.

A ∀A-interpretation I = 〈DI , vI〉 consists of a non-empty set DI and a
function vI that maps terms (constants and variables) to elements of DI , and
each Pi (i ∈ N) to a bounded function from DI to R. The function vI is
then extended to Fm by defining vI(Pi(t)) = vI(Pi)(vI(t)) for each i ∈ N and
term t, and then inductively, where vI [x 7→ a] denotes the map that sends x to

2 A function f : A→ R is bounded if there exists r ∈ R such that |f(a)| ≤ r for all a ∈ A.
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a and coincides elsewhere with vI ,

vI(0) = 0 vI(α ∧ β) = min(vI(α), vI(β))

vI(α+ β) = vI(α) + vI(β) vI(α ∨ β) = max(vI(α), vI(β))

vI(α→ β) = vI(β)− vI(α)) vI((∀x)α) =
∧
{vI [x 7→ a](α) | a ∈ D}.

We say that I satisfies α ∈ Fm if vI(α) ≥ 0 and that α is ∀A-valid, written
|=∀A α, if it is satisfied by all ∀A-interpretations.

Now let Fm1 denote the set of formulas in Fm that contain at most one
object variable x and no constants. For each ϕ ∈ Fm(L2

A), let αϕ ∈ Fm1 be
the result of replacing occurrences of 2 by (∀x) and occurrences of pi (i ∈ N)
by Pi(x), and, conversely, for any α ∈ Fm1, let ϕα ∈ Fm(L2

A) be the result
of replacing occurrences of (∀x) by 2 and occurrences of Pi(x) (i ∈ N) by pi.
Equivalences between S5(A)-validity and ∀A-validity then follow directly from
the preceding definitions.

Proposition 2.1 For any ϕ ∈ Fm(L2
A) and α ∈ Fm1,

|=S5(A) ϕ ⇐⇒ |=∀A αϕ and |=∀A α ⇐⇒ |=S5(A) ϕα.

It is not hard to check that ∀A-validity is preserved by all quantifier-shifts; that
is, for any α, β ∈ Fm, variable x that does not occur in β, and ? ∈ {+,∧,∨},

|=∀A (∀x)(α ? β)↔ ((∀x)α ? β) |=∀A (∃x)(α ? β)↔ ((∃x)α ? β)

|=∀A (∀x)(α→ β)↔ ((∃x)α→ β) |=∀A (∃x)(α→ β)↔ ((∀x)α→ β)

|=∀A (∀x)(β → α)↔ (β → (∀x)α) |=∀A (∃x)(β → α)↔ (β → (∃x)α).

Hence for any α ∈ Fm, there exists a prenex β ∈ Fm such that |=∀A α ↔ β.
Moreover, the following Herbrand theorem holds for existential sentences. 3

Theorem 2.2 For any quantifier-free formula α ∈ Fm with free variables in
x̄ = x1, . . . , xm and constants in c̄ = c1, . . . , cn,

|=∀A (∃x̄)α ⇐⇒ |=∀A
∨
{α(d̄) | d̄ ⊆ c̄}.

Proof. The right-to-left direction follows using the easily-verified fact that
|=∀A β(c) → (∃y)β(y) for any β ∈ Fm and constant c. For the converse, we
suppose contrapositively that 6|=∀A

∨
{α(d̄) | d̄ ⊆ c̄}. Then there exists a ∀A-

interpretation 〈DI , vI〉 such that vI(α(d̄)) < 0 for all d̄ ⊆ c̄. Consider now
the ∀A-interpretation 〈D′I , v′I〉 such that D′I = {vI(c1), . . . , vI(cn)} and v′I
coincides on c1, . . . , cn with vI and maps each Pi (i ∈ N) to the restriction of
vI(Pi) to D′I . Then v′I((∃x̄)α) =

∨
{vI(α(d̄)) | d̄ ⊆ c̄} < 0. So 6|=∀A (∃x̄)α. 2

3 Note that if the logic ∀A is extended to allow non-constant function symbols and predicate
symbols of arbitrary arity, it will admit Skolemization. However, the logic will then, as in
the case of first-order  Lukasiewicz logic (see [3, 12] for details), admit only an “approximate
Herbrand theorem”.
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For any α ∈ Fm1, replacing any free variable x in α with a new constant, then
iteratively replacing each positive occurrence of a subformula (∀x)α′(x) with
α′(c) for a new constant c, and finally shifting quantifiers, yields an existential
sentence β ∈ Fm such that |=∀A α ⇐⇒ |=∀A β. Theorem 2.2 now tells us
that α is ∀A-valid if and only if a certain quantifier-free sentence is ∀A-valid.
But validity of quantifier-free sentences can be checked in the ordered additive
group R and is decidable [30], so we obtain the following result.

Corollary 2.3 S5(A)-validity is decidable.

3 The One-Variable Fragment of  Lukasiewicz Logic

In this section, we prove that the one-variable fragment of first-order
 Lukasiewicz logic axiomatized as a many-valued modal logic by Rutledge in [28]
(see also [9, 11,14,22]) may be viewed as a fragment of the logic S5(A).

Let L2
Ł be a propositional language with a binary connective ⊃ and unary

connectives∼ and 2. An S5(Ł)-model is an ordered pair M = 〈W,V 〉 consisting
of a non-empty set W and a function V : {pi | i ∈ N} ×W → [0, 1] that is
extended to a function V : Fm(L2

Ł )×W → [0, 1] by

V (∼ϕ,w) = 1− V (ϕ,w)

V (ϕ ⊃ ψ, x) = min(1, 1− V (ϕ,w) + V (ψ,w))

V (2ϕ,w) =
∧
{V (ϕ, u) | u ∈W}.

An L2
Ł -formula ϕ is said to be valid in M if V (ϕ,w) = 1 for all w ∈ W , and

called S5(Ł)-valid, written |=S5(Ł) ϕ, if it is valid in all S5(Ł)-models. As in
the case of S5(A) considered in Section 2, it is straightforward to prove that
S5(Ł)-validity corresponds to validity in the one-variable fragment of first-order
 Lukasiewicz logic (see [28] for details).

Let us fix ⊥ := 2p0 ∧ ¬2p0, noting that this constant is interpreted as the
same nonpositive real number in all worlds of an S5(A)-model. We define the
following map from the set Fm0(L2

Ł ) of L2
Ł -formulas defined over {pi | i ∈ N+}

to Fm(L2
A):

p∗i = (pi ∧ 0) ∨ ⊥ (∼ϕ)∗ = ϕ∗ → ⊥
(ϕ ⊃ ψ)∗ = (ϕ∗ → ψ∗) ∧ 0 (2ϕ)∗ = 2ϕ∗.

We show that ∗ preserves validity between S5(Ł) and S5(A) by identifying the
value of ϕ ∈ Fm0(L2

Ł ) in [0, 1] with the value of ϕ∗ ∈ Fm(L2
A) in [⊥, 0].

Theorem 3.1 Let ϕ ∈ Fm0(L2
Ł ). Then |=S5(Ł) ϕ if and only if |=S5(A) ϕ

∗.

Proof. Suppose first that ϕ is not valid in an S5(Ł)-model M = 〈W,V 〉. Then
V (ϕ, x0) < 1 for some x0 ∈ W . We consider the S5(A)-model M′ = 〈W,V ′〉
where V ′(p0, x) = −1 and V ′(pi, x) = V (pi, x) − 1 (i ∈ N+) for all x ∈ W ,
noting that V ′(⊥, x) = V ′(2p0 ∧ ¬2p0, x) = −1 for all x ∈ W . It suffices
to prove that V ′(ψ∗, x) = V (ψ, x) − 1 for all x ∈ W and ψ ∈ Fm0(L2

Ł ),
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since then V ′(ϕ∗, x0) = V (ϕ, x0) − 1 < 0 and 6|=S5(A) ϕ
∗. We proceed by

induction on the size (number of symbols) of ψ. For the base case, we have
V ′(p∗i , x) = V ′((pi ∧ 0) ∨ ⊥) = V (pi, x)− 1 for each i ∈ N+. For the inductive
step we obtain, using the induction hypothesis,

V ′((ψ1 ⊃ ψ2)∗, x) = V ′((ψ∗1 → ψ∗2) ∧ 0, x)

= min(V ′(ψ∗2 , x)− V ′(ψ∗1 , x), 0)

= min((V (ψ2, x)− 1)− (V (ψ1, x)− 1), 0)

= min(V (ψ2, x)− V (ψ1, x), 0)

= min(1− V (ψ1, x) + V (ψ2, x), 1)− 1

= V (ψ1 ⊃ ψ2, x)− 1,

and, the case where ψ is ∼ψ1 being very similar, for the modal case,

V ′((2ψ1)∗, x) = V ′(2ψ∗1 , x)

=
∧
{V ′(ψ∗1 , y) | y ∈W}

=
∧
{V (ψ1, y)− 1 | y ∈W}

=
∧
{V (ψ1, y) | y ∈W} − 1

= V (2ψ1, x)− 1.

Suppose now conversely that ϕ∗ is not valid in an S5(A)-model M = 〈W,V 〉.
That is, V (ϕ∗, x0) < 0 for some x0 ∈ W . Observe first that if V (2p0, x0) = 0,
then, by a simple induction on the size of ψ ∈ Fm0(L2

Ł ), we obtain V (ψ∗, x) = 0
for all ψ ∈ Fm0(L2

Ł ) and x ∈ W , a contradiction. Hence V (2p0, x0) 6= 0.
Moreover, by scaling (dividing V (pi, y) by |V (2p0, x0)| for each i ∈ N+ and
x ∈ W ), we may assume that V (⊥, x) = −1 for all x ∈ W . We consider the
S5(Ł)-model M′ = 〈W,V ′〉 where V ′(pi, x) = max(min(V (pi, x) + 1, 1), 0) for
each x ∈W and i ∈ N+. It then suffices to prove that V ′(ψ, x) = V (ψ∗, x) + 1
for all ψ ∈ Fm0(L2

Ł ) and x ∈W by an easy induction on the size of ψ. 2

The above proof can be extended to obtain an interpretation of the full first-
order  Lukasiewicz logic into a first-order Abelian logic. In particular, monadic
first-order  Lukasiewicz logic can be viewed as a fragment of the monadic logic
∀A defined in Section 2. Since the former has been shown by Bou in unpublished
work to be undecidable, this is also the case for the latter.

4 The Modal-Multiplicative Fragment

In this section, we use the Herbrand theorem obtained in Section 2 to establish
the completeness of an axiom system for the modal-multiplicative fragment of
S5(A). 4 Let us consider first the axiom system Am defined over the language

4 Note that we follow here standard terminology from the linear and substructural logic
literature in referring to the multiplicative fragment of Abelian logic, even though the group
multiplication for the real numbers is in fact addition.



Metcalfe and Tuyt 447

(K) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
(T) 2ϕ→ ϕ
(5) 3ϕ→ 23ϕ
(M) 2(ϕ+ ϕ)→ (2ϕ+ 2ϕ)

ϕ
2ϕ (nec)

Fig. 2. Modal Axiom and Rule Schema

Lm with connectives +, →, and 0 by removing the axiom and rule schema for
∧ and ∨ from those presented in Fig. 1 and adding

nϕ
ϕ (conn) (n ≥ 2).

It is not hard to show (see, e.g., [8, 24]) that Am is complete with respect
to the multiplicative fragment of Abelian logic defined by the logical matrix
〈〈R,+,−, 0〉,R≥0〉.

Now let L2
m be the language extending Lm with 2 and let S5(Am) be the

axiom system defined over L2
m by extending Am with the modal axiom and rule

schema presented in Fig. 2. Soundness for this system is proved as usual by
checking that the axioms are S5(A)-valid and the rules preserve S5(A)-validity.

Lemma 4.1 Let ϕ ∈ Fm(L2
m). If `S5(Am) ϕ, then |=S5(A) ϕ.

To prove completeness, we will make use of the fact that occurrences of 2

can be shifted inwards and hence that every formula is provably equivalent in
S5(Am) to a formula of modal depth at most one. For ϕ,ψ ∈ Fm(L2

m), let us
write `S5(Am) ϕ ≡ ψ to denote that `S5(Am) ϕ→ ψ and `S5(Am) ψ → ϕ.

Lemma 4.2 For any ϕ,ψ ∈ Fm(L2
m),

(i) `S5(Am) 2(ϕ+ 2ψ) ≡ 2ϕ+ 2ψ

(ii) `S5(Am) 2(ϕ+ ¬2ψ) ≡ 2ϕ+ ¬2ψ
(iii) `S5(Am) 22ϕ ≡ 2ϕ

(iv) `S5(Am) 2¬2ϕ ≡ ¬2ϕ
(v) `S5(Am) 2nϕ ≡ n2ϕ for all n ∈ N.

Proof. Derivations for (i)-(iv) are obtained, similarly to other “S5” logics,
using the modal axiom schema (K), (T), and (5), and are omitted here. For
(v), we note first that n2ϕ → 2nϕ is derivable in S5(Am) for n ∈ N using
(nec) and (K) together with the axioms of Am. For the converse, observe that
2(2k)ϕ→ (2k)2ϕ is derivable in S5(Am) for k ∈ N using repeated applications
of (M), (mp), and the Am-derivable formula ψ1 → (ψ2 → (ψ1 +ψ2)). But then
also for any n ≥ 1, we can choose k ∈ N such that 2k ≥ n and observe that
(2nϕ+ (2k − n)2ϕ)→ 2(2k)ϕ and hence (2nϕ+ (2k − n)2ϕ)→ (2k)2ϕ are
derivable in S5(Am). Since (((2k−n)2ϕ)→ ((2k−n)2ϕ))→ 0 is derivable in
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S5(Am), also 2nϕ→ n2ϕ is derivable in S5(Am) as required. Finally, for the
case n = 0 just note that 20→ 0 is an instance of (T). 2

Let us write
∑n
i=1 ϕi to denote ϕ1 + . . .+ϕn for any ϕ1, . . . , ϕn ∈ Fm(L2

A). An
easy induction on modal depth using Lemma 4.2 (i)-(iv) yields the following
normal form property for modal-multiplicative formulas. 5

Lemma 4.3 For any modal-multiplicative formula ϕ ∈ Fm(L2
m), there exist

multiplicative formulas ϕ0, ϕ1, . . . , ϕn, ψ1, . . . , ψm ∈ Fm(Lm) such that

`S5(Am) ϕ ≡ ϕ0 +

n∑
i=1

2ϕi +

m∑
j=1

¬2ψj .

Let Fmm denote the set of first-order formulas in Fm not containing ∧ or ∨.
The following lemma is a consequence of a well-known duality principle for
linear programming stating that either one or another linear system has a
solution, but not both (see, e.g., [13]): more precisely, for any M ∈ Zm×n,
either yTM < 0 for some y ∈ Rm or Mx = 0 for some x ∈ Nn\{0}.
Lemma 4.4 For any quantifier-free and variable-free α1, . . . , αn ∈ Fmm,

|=∀A α1 ∨ . . . ∨ αn ⇐⇒ |=∀A
n∑
i=1

λiαi for some λ1, . . . , λn ∈ N not all 0.

Proof. Let β1, . . . , βm denote the m ground atoms Pi(cj) that occur in
α1, . . . , αn. We may assume without loss of generality that αj =

∑m
i=1mijβj

for each j ∈ {1, . . . , n}, where M = (mij) ∈ Zm×n. Then |=∀A α1 ∨ . . . ∨ αn if
and only if there does not exist any y ∈ Rm such that yTM < 0. Hence, by the
duality principle mentioned above, |=∀A α1∨ . . .∨αn if and only if Mx = 0 for
some x ∈ Nn\{0}, which is equivalent to the statement that |=∀A

∑n
i=1 λiαi

for some λ1, . . . , λn ∈ N not all zero. 2

We now have the tools required to prove our completeness theorem for S5(Am).

Theorem 4.5 Let ϕ ∈ Fm(L2
m). Then `S5(Am) ϕ if and only if |=S5(A) ϕ.

Proof. The left-to-right-direction is Lemma 4.1. For the converse, suppose
that ϕ is S5(A)-valid. By Lemma 4.3, there exist ϕ0, ϕ1, . . . , ϕn, ψ1, . . . , ψm ∈
Fm(Lm) such that `S5(Am) ϕ ≡ ψ, where

ψ = ϕ0 +

n∑
i=1

2ϕi +

m∑
j=1

¬2ψj .

By Lemma 4.1, also ψ is S5(A)-valid and it suffices to prove that `S5(Am) ψ.
Consider now the ∀A-valid (by Proposition 2.1) first-order formula

αψ = αϕ0
(x) +

n∑
i=1

(∀x)αϕi
(x) +

m∑
j=1

¬(∀x)αψj
(x).

5 It is not possible to obtain a similar normal form property for all ϕ ∈ Fm(L2A) simply by
shifting boxes; e.g., 2(p ∨ (q + 2r)) is not equivalent to any formula of modal depth ≤ 1.
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Using generalization, renaming of variables, and quantifier shifts,

|=∀A (∀y0)(∀y1) . . . (∀yn)(∃x1) . . . (∃xm)
( n∑
i=0

αϕi(yi) +

m∑
j=1

¬αψj (xj)
)
.

Hence also for constants c̄ = c0, c1, . . . , cn,

|=∀A (∃x1) . . . (∃xm)
( n∑
i=0

αϕi(ci) +

m∑
j=1

¬αψj (xj)
)
.

An application of Theorem 2.2 then yields, writing d̄ for d1, . . . , dm,

|=∀A
∨{ n∑

i=0

αϕi(ci) +

m∑
j=1

¬αψj (dj) | d̄ ⊆ c̄
}
.

But then by Lemma 4.4, there exist λd̄ ∈ N for each d̄ ⊆ c̄ not all 0 satisfying

|=∀A
∑
d̄⊆c̄

λd̄
( n∑
i=0

αϕi(ci) +

m∑
j=1

¬αψj (dj)
)
.

Hence also, letting µ =
∑
d̄⊆c̄ λd̄,

|=∀A
n∑
i=0

µαϕi(ci) +
∑
d̄⊆c̄

λd̄

m∑
j=1

¬αψj (dj).

Now let us rewrite the second part of this ∀A-valid formula to obtain

|=∀A
n∑
i=0

µαϕi
(ci) +

n∑
i=0

m∑
j=1

λij¬αψj
(ci),

for some λij (0 ≤ i ≤ n, 1 ≤ j ≤ m) such that
∑n
i=0

∑m
j=1λij =

∑
d̄⊆c̄ λd̄ = µ.

Then for each i ∈ {0, 1, . . . , n}, we must have

|=∀A µαϕi(ci) +

m∑
j=1

λij¬αψj (ci).

So also, by Proposition 2.1,

|=S5(A) µϕi +

m∑
j=1

λij¬ψj .

By the completeness of Am with respect to 〈〈R,+,−, 0〉,R≥0〉, it follows that
for each i ∈ {0, 1, . . . , n},

`S5(Am) µϕi +

m∑
j=1

λij¬ψj .
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But then for each i ∈ {1, . . . , n}, using (nec), (K), (T), and Lemma 4.2,

`S5(Am) µ2ϕi +

m∑
j=1

λij¬2ψj and also `S5(Am) µϕ0 +

m∑
j=1

λ0j¬2ψj ,

and using (mp) and the Am-axiom (+1),

`S5(Am) µϕ0 +

n∑
i=1

µ2ϕi + µ

m∑
j=1

¬2ψj .

Finally, an application of (conµ) yields `S5(Am) ψ as required. 2

In principle, this proof strategy can also be used to prove completeness for
an axiom system for the full logic S5(A). New variables can be introduced to
obtain a depth-one formula as in Lemma 4.3, and Theorem 2.2 can then be
applied to the resulting existential sentence to obtain an S5(A)-valid disjunction
of quantifier-free sentences. However, the presence of ∧ and ∨ requires repeated
applications of Lemma 4.4 and currently we are able only to prove completeness
using this method for a system with a family of combinatorially defined axioms.

Let us remark finally that, as in the classical setting, the monadic logic
∀A restricted to Fmm coincides (up to equivalence of sentences) with its one-
variable fragment. Let α ∈ Fmm be any sentence. Repeated applications of
the quantifier-shift |=∀A (∀x)(α1 + α2) ↔ ((∀x)α1 + α2), where x is not free
in α2 yield a sentence β ∈ Fmm such that |=∀A α ↔ β and no subformula
(∀x)β′ of β contains a free variable different to x. Hence we can rename all
the bound variables in β to obtain a one-variable sentence χ ∈ Fmm such that
|=∀A α↔ χ. Since S5(A) is decidable (Corollary 2.3), first-order multiplicative
Abelian logic provides a first interesting example (as far as we know) of a
first-order infinite-valued logic that has a decidable monadic fragment.

5 Monadic Abelian `-Groups

In this section, we introduce abelian `-groups supplemented with a monadic
operator as an algebraic semantics for S5(A). Following similar results for
monadic Heyting algebras [5] and monadic MV-algebras [14], we describe
a correspondence between these algebras and lattice-ordered abelian groups
equipped with certain “relatively complete” subalgebras. We then use this
correspondence to give a characterization of the “ideals” of these algebras.

An abelian `-group is an algebraic structure G = 〈G,∧,∨,+,−, 0〉 such that
〈G,∧,∨〉 is a lattice, 〈G,+,−, 0〉 is an abelian group, and + is compatible with
the lattice order, i.e., a ≤ b implies a+ c ≤ b+ c for all a, b, c ∈ G. We call G
an abelian o-group if the lattice order ≤ is linear. A non-empty subset H ⊆ G
that is closed under the operations of G forms an `-subgroup H of G, where
H is called an `-ideal of G if it is also convex, i.e., if a, b ∈ H, c ∈ G, and
a ≤ c ≤ b, then c ∈ H. For any `-ideal H of G, the set of right cosets of H in
G forms an abelian `-group G/H with lattice order H+a ≤ H+b :⇔ a ≤ b+c
for some c ∈ H. We refer to [1] for further details.
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Example 5.1 The ordered additive group R encountered in Section 2 is an
abelian o-group. Also important for our purposes are abelian `-groups obtained
as sets of functions from a set W to an abelian `-group G with operations
defined pointwise, denoted by GW . In particular, we will consider the case
where G is an abelian o-group and the bounded functions from W to G form
an `-subgroup B(W,G) of GW .

A monadic abelian `-group is an ordered pair 〈G,2〉 consisting of an abelian
`-group G and a unary operator 2 on G, with defined operator 3a := −2−a,
that satisfies for all a, b ∈ G,

(M1) 2(a+ b) ≤ 2a+ 3b (M4) 2(a ∧ b) = 2a ∧2b
(M2) 2a ≤ a (M5) 3(a ∧3b) = 3a ∧3b
(M3) 3a = 23a (M6) 2(a+ a) = 2a+ 2a.

A non-empty subset H ⊆ G forms a monadic `-subgroup 〈H,2〉 of 〈G,2〉 if H
is an `-subgroup of G that is closed under 2.

Let M`G denote the variety of monadic abelian `-groups. We call 〈G,2〉 ∈
M`G functional if G is an `-subgroup of B(W,H) for a set W and abelian
o-group H, and for all f ∈ G, x ∈W ,

2f(x) =
∧
{f(y) | y ∈W}.

If 2f(x) = min{f(y) | y ∈W} for all f ∈ G, x ∈W , we call 〈G,2〉 witnessed,
and in the case where H is R, we call 〈G,2〉 standard.

Observe now that for any 〈G,2〉 ∈ M`G, the set 2G := {2a | a ∈ G} =
{3a | a ∈ G} forms an `-subgroup 2G of G satisfying for all a ∈ G,

2a =
∨
{b ∈ 2G | b ≤ a}.

More generally, an `-subgroup G0 of an abelian `-group G is relatively complete
if
∨
{b ∈ 2G | b ≤ a} exists for all a ∈ G, or, equivalently, the inclusion map of

G0 in G has a right adjoint 20 : G→ G0, i.e., for all a ∈ G0 and b ∈ G,

a ≤ 20b ⇐⇒ a ≤ b.

In this case, we obtain an algebraic structure 〈G,20〉 that satisfies conditions
(M1)-(M4) in the definition of a monadic abelian `-group. To ensure, however,
that (M5) and (M6) are satisfied, we require also that for all a, b ∈ G,

20(a+ a) = 20a+ 20a and 30(a ∧30b) = 30a ∧30b,

in which case 〈G,20〉 ∈ M`G with 20G = G0, and we call G0 m-relatively
complete. Hence we obtain the following result.

Proposition 5.2 There exists a one-to-one correspondence between monadic
abelian `-groups 〈G,2〉 and ordered pairs 〈G,G0〉 of abelian `-groups such that
G0 is an m-relatively complete `-subgroup of G.
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Example 5.3 The universe of any non-trivial relatively complete `-subgroup
of an abelian `-group B(W,R) for some set W is a set of constant functions
{f : W → {r} | r ∈ H}, where H will be R if the `-subgroup is m-relatively
complete, and a one-generated `-subgroup of R otherwise.

Given a monadic abelian `-group 〈G,2〉, we say that K is a monadic `-ideal
of 〈G,2〉 if K is an `-ideal of G and a ∈ K implies 2a ∈ K. It is straightforward
to check that in this case, 〈G,2〉/K := 〈G/K,2K〉 with 2K(K+a) := K+2a
is a monadic abelian `-group.

Proposition 5.4 The monadic `-ideals of a monadic abelian `-group 〈G,2〉
and the `-ideals of 2G are in a one-to-one correspondence implemented by the
maps J 7→ J ∩2G and K 7→ K23 := {a ∈ G | 2a ∈ K and 3a ∈ K}.

Proof. First consider any `-ideal K of 2G. We show that K23 is a monadic
`-ideal of G. For closure under −, observe that if a ∈ K23 (i.e., 2a,3a ∈ K),
since K is an `-ideal, −2a = 3−a ∈ K and −3a = 2−a ∈ K, so −a ∈ K23.
For closure under +, observe that if a, b ∈ K23 (i.e., 2a,2b,3a,3b ∈ K),
using property (M1) of monadic abelian `-groups,

K 3 2a+ 2b ≤ 2(a+ b) ≤ 3a+ 2b ∈ K
K 3 2a+ 3b ≤ 3(a+ b) ≤ 3a+ 3b ∈ K,

so by convexity 2(a + b),3(a + b) ∈ K and hence a + b ∈ K23. Moreover,
using properties (M4) and (M2),

K 3 2a ∧2b = 2(a ∧ b) ≤ 3(a ∧ b) ≤ 3a ∧3b ∈ K,

so by convexity again, a ∧ b ∈ K23. Closure under 2 is clear and convexity is
a consequence of the monotonicity of 2 and 3. So K23 is a monadic `-ideal
and, since a = 2a = 3a for any a ∈ K, also K = K23 ∩2G.

Now consider any monadic `-ideal J of 〈G,2〉. Since 2G is an `-subgroup of
G, it follows easily that J ∩2G is the universe of an `-ideal of 2G. Moreover,
2J ⊆ J ∩ 2G, so J ⊆ (J ∩ 2G)23. Conversely, if a ∈ (J ∩ 2G)23, then
2a,3a ∈ J and, since 2a ≤ a ≤ 3a, by convexity, a ∈ J . So J = (J ∩2G)23

and we have shown that the maps implement a one-to-one correspondence. 2

6 A Completeness Theorem

In this section, we prove the completeness with respect to S5(A)-validity of an
axiom system S5(A) consisting of the axiom and rule schema for Abelian logic
in Fig. 1, the modal axiom and rule schema in Fig. 2, and the axiom schema

(∧2) (2ϕ ∧2ψ)→ 2(ϕ ∧ ψ) (∧3) (3ϕ ∧3ψ)→ 3(ϕ ∧3ψ).

First, a standard Lindenbaum-Tarski argument can be used to prove that
S5(A) is complete with respect to the variety M`G of monadic abelian `-groups.

Lemma 6.1 Let ϕ ∈ Fm(L2
A). Then `S5(A) ϕ if and only if M`G |= 0 ≤ ϕ.
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The remainder of this section is dedicated to proving the completeness of S5(A)
with respect to first the functional members and then the standard members of
M`G. As a first step towards these results, we show that it suffices to consider
monadic abelian `-groups 〈G,2〉 such that 2G is linearly ordered, which, for
convenience, we call chain-monadic abelian `-groups.

Recall (see e.g. [6]) that a monadic abelian `-group 〈G,2〉 is a subdirect
product of a family of monadic abelian `-groups (〈Hj ,2j〉)j∈J if it is a monadic
`-subgroup of the direct product

∏
j∈J〈Hj ,2j〉 such that each projection map

πj :
∏
k∈J〈Hk,2k〉 → 〈Hj ,2j〉; (ak)k∈J 7→ aj is surjective. Crucially, if an

equation fails in 〈G,2〉, then it fails in some 〈Hj ,2j〉. Let us also recall that
an `-ideal K of an abelian `-group G is called prime if G/K is linearly ordered.

Lemma 6.2 Each monadic abelian `-group is isomorphic to a subdirect product
of chain-monadic abelian `-groups.

Proof. Let 〈G,2〉 be a monadic abelian `-group and let S be the set of all
prime `-ideals P of 2G. Then 2G/P is linearly ordered for each P ∈ S
and

⋂
{P | P ∈ S} = {0} (see, e.g., [1, Proposition 1.2.9]). By Proposi-

tion 5.4, each P ∈ S corresponds to a monadic `-ideal P23 of 〈G,2〉 such
that 2G/P23 is linearly ordered. Moreover, since 2a = 3a = 0 implies
a = 0 for all a ∈ G, it follows that

⋂
{P23 | P ∈ S} = {0} and the map

σ : 〈G,2〉 →
∏

P∈S〈G,2〉/P23; a 7→ (P23 + a)P∈S is an embedding between
monadic abelian `-groups. Hence, 〈G,2〉 is isomorphic to a subdirect product
of the family of chain-monadic abelian `-groups (〈G,2〉/P23)P∈S . 2

Following a method used in [9] to characterize subdirectly irreducible
monadic MV-algebras, we now show that each chain-monadic abelian `-group
〈G,2〉 admits a functional representation.

Lemma 6.3 Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G. Then
there exists a prime `-ideal P of G such that P+a = P+2a and P∩2G = {0}.

Proof. Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G. We apply
Zorn’s Lemma to the set K of all `-ideals K of G such that K ∩2G = {0} and
a − 2a ∈ K, ordered by inclusion. First, we check that K is non-empty. We
show that the `-ideal K(a − 2a) of G generated by the element a − 2a is in
K. By, e.g., [1, Proposition 1.2.3], recalling that |x| := x ∨ −x for any x ∈ G,

K(a−2a) = {b ∈ G | |b| ≤ n|a−2a| for some n ∈ N}.

Let b ∈ K(a−2a) ∩2G. Then for some n ∈ N,

|b| = 2|b| ≤ 2(2n|a−2a|) since |b| ∈ 2G, b ∈ K(a−2a)

= 2n2|a−2a| using (M6)

= 2n2(a−2a) using (M2)

= 2n(2a−2a) using (M1), (M2), and (M3)

= 0.
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So b = 0 and K 6= ∅. Moreover, it is easy to see that K is closed under taking
unions of chains, so Zorn’s Lemma yields a maximal element P ∈ K.

Suppose for a contradiction that P is not prime. Then there exist b, c ∈ G
with b ∧ c = 0 but b, c 6∈ P (see, e.g., [1, Theorem 1.2.10]). By the maximality
of P, there exist r ∈ (P (b) ∩ 2G)\{0} and s ∈ (P (c) ∩ 2G)\{0}, where P(b)
and P(c) are the `-ideals generated by P ∪{b} and P ∪{c}, respectively. Since
2G is linearly ordered, we can assume without loss of generality that |r| ≤ |s|.
Convexity then implies that also r ∈ P (c) ∩ 2G. Hence r ∈ P (b) ∩ P (c) =
P (b ∧ c) = P (0) = P . But P ∩ 2G = {0}, so r = 0, a contradiction. That is,
P is prime. Finally, note that since a−2a ∈ P , also P + a = P + 2a. 2

Lemma 6.4 Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G\{0}.
Then there exists a prime `-ideal P of G such that a 6∈ P and P ∩2G = {0}.

Proof. Let 〈G,2〉 be a chain-monadic abelian `-group and a ∈ G\{0}. We
apply Zorn’s Lemma to the set K of all proper `-ideals K of G such that for
all r ∈ 2G\{0}, |a| ∧ |r| 6∈ K, ordered by inclusion. To show that {0} ∈ K, it
suffices to show that for a ∈ G, r ∈ 2G, a ∧ r = 0 implies that a = 0 or r = 0.
If a ∧ r = 0, then also 2(a ∧ r) = 2a ∧ r = 0 and 3(a ∧ r) = 3a ∧ r = 0 using
conditions (M4) and (M5), respectively. Since 2G is linearly ordered, either
r = 0 or 2a = 3a = 0, i.e. r = 0 or a = 0. Moreover,

⋃
C ∈ K for any chain

C ⊆ K, therefore K contains a maximal element P.
We show next that P is prime. Consider b, c ∈ G such that b ∧ c = 0 and

suppose for a contradiction that b, c 6∈ P . By the maximality of P, neither P(b)
nor P(c) belongs to K and so there exist p, q ∈ 2G\{0} such that |a|∧|p| ∈ P (b)
and |a| ∧ |q| ∈ P (c). Since 2G is linearly ordered, we can assume without loss
of generality that |p| ≤ |q|. Then 0 ≤ |a| ∧ |p| ≤ |a| ∧ |q|, so by convexity,
|a| ∧ |p| ∈ P (b) ∩ P (c) = P (b ∧ c) = P , contradicting P ∈ K.

Lastly note that P satisfies the required properties. For, if a ∈ P , then
|a| ∈ P and so by convexity, |a| ∧ |r| ∈ P for all r ∈ 2G, contradicting P ∈ K.
It follows similarly that P ∩2G = {0}. 2

Theorem 6.5 Any chain-monadic abelian `-group 〈G,2〉 is isomorphic to a
witnessed functional monadic abelian `-group.

Proof. Let 〈G,2〉 be a chain-monadic abelian `-group, and let {Pi}i∈I be the
family of all prime `-ideals P of G such that P ∩ 2G = {0}. It follows from
Lemma 6.4 that

⋂
{Pi | i ∈ I} = {0} and hence that σ : G→

∏
i∈I G/Pi; a 7→

(a+Pi)i∈I is an embedding between abelian `-groups. Moreover, for each i ∈ I,
since Pi ∩2G = {0}, the map πi ◦ σ|2G is an `-embedding, where πi is the ith
projection map.

We make use of a generalized amalgamation property for abelian o-groups:
that is, for any abelian o-group H0, family of abelian o-groups {Hj}j∈J , and
family of `-embeddings {γj : H0 → Hj}j∈J , there exists an abelian o-group
H (called the amalgam) and family of `-embeddings {σj : Hj → H}j∈J such
that σj1 ◦ γj1 = σj2 ◦ γj2 for all j1, j2 ∈ J . This property was established by
Pierce [27] for families of size 2 and extended to the generalized version in [9].



Metcalfe and Tuyt 455

For the abelian o-group 2G, family of abelian o-groups {G/Pi}i∈I and
family of `-embeddings {πi ◦ σ|2G : 2G → G/Pi}i∈I , we therefore obtain an
amalgam H with `-embeddings γi : G/Pi → H for each i ∈ I. Defining γ :=∏
i∈I γi :

∏
i∈I G/Pi → HI yields an `-embedding ρ := γ◦σ : G→ HI . Observe

now that for all r ∈ 2G and i, j ∈ I,

ρ(r)(i) = γi(σ(r)(i)) = γi(πi(σ(r))) = γj(πj(σ(r))) = γj(σ(r)(j)) = ρ(r)(j).

That is, ρ(r) is a constant function. Moreover, for each a ∈ G, there exists, by
Lemma 6.3, an i ∈ I such that Pi + a = Pi +2a and hence ρ(2a)(i) = ρ(a)(i).
So for any a ∈ G and i ∈ I, we obtain ρ(2a)(i) = min{ρ(a)(j) | j ∈ I}. 2

To prove the promised completeness result for S5(A), we make use of the
following folklore result from the theory of abelian `-groups.

Lemma 6.6 (cf. [10]) Let G be an abelian o-group. For each finite subset S
of G, there exists a function h : S → R satisfying for all a, b, c ∈ S,

(i) a ≤ b if and only if h(a) ≤ h(b);

(ii) if 0 ∈ S, then h(0) = 0;

(iii) a+ b = c if and only if h(a) + h(b) = h(c);

(iv) b = −a if and only if h(b) = −h(a).

Theorem 6.7 Let ϕ ∈ Fm(L2
A). Then `S5(A) ϕ if and only if |=S5(A) ϕ.

Proof. For the left-to-right direction, it is easily checked that the axioms are
S5(A)-valid and the rules preserve S5(A)-validity. For the converse, suppose
that 6`S5(A) ϕ. By Lemmas 6.1 and 6.2, there exist a chain-monadic abelian
`-group 〈G,2〉 and a valuation e : Fm(L2

A) → 〈G,2〉 such that 0 6≤ e(ϕ). By
Theorem 6.5, we may assume that G is a witnessed `-subgroup of B(W,H) for
some non-empty set W and abelian o-group H. Hence there exists x0 ∈ W
such that e(ϕ)(x0) < 0. Let Σ be the set of subformulas of ϕ. For each 2ψ ∈ Σ,
we choose x2ψ ∈W such that

e(2ψ)(x2ψ) = e(ψ)(x2ψ).

Let W ′ := {x2ψ ∈W | 2ψ ∈ Σ} ∪ {x0} and define

S := {e(ψ)(x) | x ∈W ′, ψ ∈ Σ} ∪ {−e(ψ)(x) | x ∈W ′, ψ ∈ Σ} ∪ {0}.

Since both W ′ and Σ are finite, so is S. Using Lemma 6.6, we obtain a function
h : S → R satisfying the properties (i)-(iv). We consider the standard monadic
abelian `-group 〈B(W ′,R),2〉 and any valuation e′ : Fm(L2

A)→ 〈B(W ′,R),2〉
such that for each p ∈ Σ ∩Var and x ∈W ′,

e′(p)(x) := h(e(p)(x)).

A simple induction on formulas shows that e′(ψ)(x) = h(e(ψ)(x)) for all ψ ∈ Σ
and x ∈W ′, and in particular,

e′(ϕ)(x0) = h(e(ϕ)(x0)) < h(0) = 0.
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Finally, consider the S5(A)-model 〈W ′, V 〉 where V (p, x) := e′(p)(x) for each
x ∈W ′ and observe that V (ϕ, x0) = e′(ϕ)(x0) < 0. Hence 6|=S5(A) ϕ. 2
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[22] P. Hájek, On fuzzy modal logics S5(C), Fuzzy Sets and Systems 161 (2010), 2389–2396.

[23] G. Hansoul and B. Teheux, Extending  Lukasiewicz logics with a modality: Algebraic
approach to relational semantics, Studia Logica 101 (2013), no. 3, 505–545.

[24] R.K. Meyer and J.K. Slaney, Abelian logic from A to Z, Paraconsistent logic: Essays on
the inconsistent, 1989, pp. 245–288.



Metcalfe and Tuyt 457

[25] M. Mio and A. Simpson,  Lukasiewicz µ-calculus, Fundam. Inform. 150 (2017), 317–346.

[26] F. Montagna and C. Tsinakis, Ordered groups with a conucleus, J. Pure Appl. Algebra
214 (2010), no. 1, 71–88.

[27] K.R. Pierce, Amalgamations of lattice ordered groups, Trans. Amer. Math. Soc. 172
(1972), 249–260.

[28] J.D. Rutledge, A preliminary investigation of the infinitely many-valued predicate cal-
culus, Ph.D. Thesis, 1959.

[29] U. Straccia, Reasoning within fuzzy description logics, J. Artificial Intelligence Res. 14
(2001), 137–166.

[30] V. Weispfenning, Model theory of abelian `-groups, Lattice-ordered groups, 1989, pp. 41–
79.


	Introduction
	A Real-Valued Monadic Logic
	The One-Variable Fragment of Łukasiewicz Logic
	The Modal-Multiplicative Fragment
	Monadic Abelian -Groups
	A Completeness Theorem

