On the axiomatisation of common knowledge

Andreas Herzig !
IRIT, CNRS, Univ. Toulouse 3, France
Elise Perrotin

IRIT, Univ. Toulouse 3, France

Abstract

Standard axiomatisations of the logic of common knowledge contain the greatest
fixed-point axiom schema. While such an inductive principle matches our intuitions
in the context of temporal logics, it is not immediately obvious in an epistemic con-
text. We propose an axiom schema that we believe to be more intuitive. It says
that if it is common knowledge that everybody knows whether ¢ then it is common
knowledge whether ¢. Our schema is sound for KT-based common knowledge and
moreover complete for S5-based common knowledge. In contrast, it is unsound for
logics without the T-axiom. Our axiom schema directly leads to a simple and intuitive
axiomatisation of the ‘common knowledge whether’ operator.

Keywords: Common knowledge, axiomatisation, induction axiom, greatest
fixed-point axiom.

1 Introduction

The standard axiomatisations of the logic of common knowledge contain the
induction axiom schema, alias greatest fixed-point axiom

GFP C(¢ —» Ep) — (p — Cyp),

where C stands for “it is common knowledge that” and E stands for “everybody
knows that” [15,13,9]. An alternative axiomatisation [10,6] has the induction
rule

RGFP from ¢ — E(¥ A ), infer ¢ — Cub.

In the proof theory literature there exist sequent system counterparts of these
principles, e.g. in [1,11]. Similar axioms and rules were used to axiomatise
common belief [3,17].

Such inductive principles are common in temporal logics, where they mir-
ror induction on the natural numbers. There, the reading is obvious and the
intuitive meaning is clear. More generally, we can make sense of such principles

1 http://orcid.org/0000-0003-0833-2782, https://www.irit.fr/~Andreas.Herzig
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when interpreted on well-founded orderings. However, at least to the present
authors the meaning of the induction axiom schema is less obvious when the
modal operator is that of common knowledge, and one might even wonder
whether it is a reasonable principle at all. To witness the difficulty to find an
intuitive reading to the above principles, consider the reading of RGFP that is
given in the introductory chapter of the Handbook of Epistemic Logic:

“If it is the case that ¢ is ‘self-evident’, in the sense that if it is true, then
everyone knows it, and, in addition, if ¢ is true, then everyone knows v, we
can show by induction that if ¢ is true, then so is E¥(v A ¢) for all k.” [22]

The explanations in the standard texts resort to concepts such as ‘¢ indicates
to every agent that 1 is true’ [16], ‘@ is evident’ [18], ‘it is public that ¢ is
true’ [24], or ‘p is a common basis implying shared belief in ¢’ [8]. With these
understandings RGFP can be read “if ¢ is public and indicates 1 to everybody
then truth of ¢ implies that v is common knowledge”. The formalisation of
these supplementary concepts however introduces further complications, see
e.g. [5] for a tentative to settle the logic of ‘indicates’.

Can the above inductive principles be replaced by principles with more
intuitive appeal? We here propose a new axiom schema:

GFPO C(EgpV E—-p) — (Cp Vv C—yp).

Unlike GFP and RGFP, it can be read straightforwardly: “if it is common knowl-
edge that everybody knows whether ¢ then it is common knowledge whether
©”; or alternatively: “common knowledge that the status of ¢ is shared knowl-
edge implies that the status of ¢ is common knowledge”. In the present paper
we focus on KT- and S5-based common knowledge. We prove the following
results:

1) GFPO is a theorem if the logic of individual knowledge 1s at least ;
i i h if the logic of individual k ledge i 1 KT
(ii) GFPO is equivalent to GFP if the logic of individual knowledge is S5;

(iii) GFPO leads to a simple and intuitive axiomatisation of S5-based ‘common
knowledge whether’;

(iv) GFPO is specific to knowledge and fails for belief: contrarily to the status of
the standard induction principles, its status differs depending on whether
the context is epistemic or doxastic.

Most papers in the literature start by introducing the Kripke semantics and
then discuss the axiomatisation of its validities. In contrast, the present paper
is semantic-free: all proofs are done syntactically via the axioms and inference
rules of the respective systems.

For the sake of simplicity we here only consider shared and common knowl-
edge of the set of all agents. Everything however straightforwardly generalises
to common knowledge of arbitrary sets of agents.

The paper is organised as follows. In the next two sections we give the
background: two axiom systems for individual knowledge and shared knowl-
edge, KT and S5 (Section 2), and the two standard axiom systems for common
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CPC axiomatics of classical propositional calculus
RN(K;) from ¢, infer K;p

KK;)  Kilp = v) = (Kip = Kip)

*5<K2) -K;p — K;—K;p

Def(E) Ep < Ajca, Kiv

Table 1
Axiomatisation of KT (without %5(K;)) and S5 (including #5(K;)) individual
knowledge and shared knowledge. The axiom that is not part of the KT
axiomatics—i.e., axiom *5(K;)—is starred.

knowledge (Section 3), which we syntactically prove to be equivalent. In Sec-
tion 4 we prove that the S5-based GFPO axiomatics is equivalent to the standard
axiomatics. In Section 5 we axiomatise S5-based ‘common knowledge whether’.
In Section 6 we discuss how completeness for logics of knowledge that are weaker
than S5 could be obtained. In Section 7 we show that our new axiom is unin-
tuitive for logics of belief, understood as logics that do not have the T axiom
for individual belief. We conclude in Section 8.

2 Background: individual and shared knowledge

Let Prop be a countable set of propositional variables with typical elements
P, q, ... Let Agt be a fixed, finite set of agents with typical elements i, j, ... The
grammar of formulas is

o = plopleNe | Kip | Ep| Co,

where p ranges over Prop and i over Agt. The formula K;p reads “i knows
that ¢”; Ep reads “everybody knows that ¢”, or “it is shared knowledge that
©”;2 finally, Cip reads “it is common knowledge that ¢”.

A logic of common knowledge is based on a logic of the individual knowledge
operators K; that is situated between S5 and KT, where the latter is the
weakest normal modal logic having the truth axiom K;p — ¢. In this paper
we only consider S5 and KT individual knowledge. Table 1 recalls the two
axiomatistions as well as the axiom Def(E) defining shared knowledge. In
order to distinguish the axioms and theorems of S5 from those of KT we adopt
the convention that formulas that are not theorems of logic KT are prefixed by
“x”, such as *5(K;) in Table 1.

The operator E is a normal modal operator: it obeys the modal schema K
and the rule of necessitation RN. Moreover it obeys:

T(E) E¢ — .

2 Many authors use the adjective ‘mutual’ instead of ‘shared’. We opted for the latter
because some philosophers such as Stephen Schiffer use the terms ‘mutual knowledge’ and
‘mutual belief’ [20] in order to refer to common knowledge and common belief (see e.g. [14]).
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It is straightforward to prove that the following holds for logics of individual
knowledge from KT on:

Proposition 2.1 The formula
Def2(Eif) (EpV E~-p) + /\ieAgt(Ki‘P VvV K;—p)
1s a theorem of the KT axiomatics.

The name of the equivalence anticipates its use in the axiomatics of
‘knowing-whether’ in Section 5.
Despite the fact that the shared knowledge operator E neither obeys positive
nor negative introspection, it obeys the B axiom:
Proposition 2.2 The formula
+«B(E) - — E-Ep
is a theorem of the S5 axiomatics.

Proof. The proof is simple, but we give it here as we did not find it in the
literature:

(i) ¢ = K=K~y *B(K;)
(ii)) "K;—p — ~E-p from Def(E)
(i) K;~K;~p — K;—E-¢p from (ii), K; normal
(iv) ¢ = K;=E-p from (i), (iii)
(v) ¢ > E-E—p from (iv) with Def(E)

O

3 Background: two standard axiomatisations of
common knowledge

An overview of the different axiomatisations of logics of common knowledge can
be found in [17] where the relation between the underlying logic of individual
knowledge and the resulting logic of common knowledge is studied in depth.
The paper not only considers knowledge, but also belief. As already said above,
our new axiom is not appropriate for common belief. Moreover, only two logics
of knowledge are in focus in the present section: systems where the logic of K;
is either KT or S5. (Logics of knowledge between these two are discussed in
Section 6.)

In the next two subsections we recall two standard axiomatisations of the
logic of common knowledge, one with the induction rule RGFP and one with
the induction axiom schema GFP. We then prove the equivalence of these two
axiomatisations.

3.1 With the induction axiom GFP

The two axiomatics with the induction axiom schema GFP are in Table 2 (left).
We distinguish the Sh-based from the KT-based axiomatics by starring the
supplementary axioms, namely the negative introspection axioms x5(K;) and
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#5(C). Both axiomatics are due to [9]; others can be found in [15,13]. Such
axiomatisations are popular in Dynamic Epistemic Logics [21,23].

It is a standard result in normal modal logics that axiom 4 can be proved
from T and 5. In the case of common knowledge, 4(C) is already a theorem of
the KT-based logic thanks to the induction axiom schema:

Proposition 3.1 The formula
4(C) Cp — CCyp

is a theorem of the KT-based GFP axiomatics.

Proof.

(i) C(Cyp — ECyp) from FP’ and RN(C)
(ii) C(Cyp — ECyp) — (Cp — CCyp) GFP
(iii) Cp — CCyp from (i) and (ii)

d

Proposition 3.2 Axiom *5(C) is redundant in the S5-based GFP axiomatics.
Proof.

(i) ~Cy — K;=K;Cop «B(K;)
(ii) Cyp — K;Cyp from FP’ and Def(E)
(iii) K;-K;Cp — K;=Cyp from (ii), K; normal
(iv) =Cyp — K;—Cyp from (i), (iii)
(v) "Cp — E-Cyp from (iv) by Def(E)
(vi) C(—Cyp — E-Cyp) from (v) by RN(C)

(vii) C(=Cyp — E-Cyp) — (-Cp — C—-Cyp) GFP
(viii) =Cyp — C—-Cyp from (vi) and (vii)
O

3.2 With the induction rule RGFP

The two axiomatics with the induction rule RGFP are given in Table 2 (right).
They are due to [10,6]; the induction rule can actually be traced back to the
analysis of common knowledge in the philosophical literature [24]. Interestingly
and contrasting with the GFP axiomatics, the S5 axioms and rules for C are
implicit here:

Proposition 3.3 The formulas K(C), T(C), 4(C), and *5(C) are theorems
and the rule RN(C) is derivable in the S5-based RGFP aziomatics.

Proof. The proofs are simple, but we give them here for completeness. K(C)
can be proved by substituting ¢ by Co A C(¢ — 1) in RGFP, using FP and that
E is a normal modal operator. T(C) can be proved from FP and T(E). 4(C)
can be proved by substituting both ¢ and 1 by Cy in RGFP, using FP and that
E is a normal modal operator. The rule RN(C) can be derived with RGFP if we
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GFP-based axiomatics RGFP-based axiomatics
KT the axiomatics of Table 1 | KT the axiomatics of Table 1
RN(C) from ¢, infer Cyp
K(C) Cp—1)— (Cp— Cy)
T(C) Cyp—op
*5(C) —Cp — C-Cyp

FP’ Cyp — ECyp FP Cp = E(pACy)
GFP C(¢ = Ep) = (p = Cp) | RGFP  from ¢ — E(¢ A ¢),
infer ¢ — Cv
Table 2

Two axiomatisations of KT-based and S5-based common knowledge: the GFP
axiomatics with an induction axiom of [9] (left) and the RGFP axiomatics with an
induction rule of [10,6] (right). The principles that are not part of the KT-based

axiomatics—i.e., the %5 axioms—are starred.

substitute T for ¢ and ¢ for ¢ and use that E is a normal modal operator. It
is only the proof of *5(C) which is a bit longer:

(i) ¢ = E-E—p +B(E)
(ii) E-E—p — E-C—p from FP, E normal
(iii) E-C—¢ — EE-EC—¢p from *B(E), E normal
(iv) EE-EC—¢ — EE-C—¢p from FP, E normal
(v) E-C-¢p — E(=C—-p A E-C—p) from (iii), (iv), E normal
(vi) E2C—p — C-C—p from (v) by RGFP

(vil) ¢ = C-C—gp from (i), (i), (vi)
O

3.3 Equivalence of the two axiomatics

The RGFP axiomatics and the GFP axiomatics are both complete for the same
semantics (which we do not give here). Therefore all axioms in one system must
be derivable in the other, and the inference rules of one system are admissible
in the other. We are however not aware of a direct equivalence proof in the
respective systems in the literature, so we give it below.® We prove the two
directions:

(i) in the RGFP axiomatics, K(C), T(C), *5(C), FP’, GFP are theorems and
RN(C) is derivable;
(ii) in the GFP axiomatics, FP’ is a theorem and RGFP is derivable.

We have already established in Section 3.2 that K(C), T(C), and *5(C) are

3 The paper by Bucheli et al. [4] establishes that RGFP is derivable from a variant of GFP,
C(¢ — E¢) — (E¢ — Cy) (which they have to choose instead of RGFP because they take
K as the logic of individual knowledge). However their proof is indirect, making use of an
intermediate system.
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the axiomatics of Table 1
RN(C) from ¢, infer Cyp
K(C) Clp— ) — (Cp— Cy)
4(C) Cp—CCyp
FPO Cyp — Ep
GFP0 C(EpVE-yp) — (CpV C—yp)

Table 3
Alternative axiomatisation of S5 common knowledge: the GFPO axiomatics.

theorems of the RGFP axiomatics. Second and quite obviously, as E is a normal
modal operator, we have that FP’ is provable from FP and that, the other way
round, FP is provable from FP’ and T(C). It remains to prove the equivalence
of the induction axiom and the induction rule.

Proposition 3.4 The induction axiom GFP is a theorem of the KT-based RGFP
aziomatics (and a fortiori of the S5-based RGFP aziomatics).

Proof.

(i) C(y — Ep) — EC(p — Egp) from FP, E normal
(ii) (Clp = Ep) Ap) = Ep from T(C)
(iii) (C(p = Ep) Ap) = (Ep ANEC(p — Egp)) from (i) and (ii)
(iv) (Clp = Ep) Ap) = E((p A C(p = Ep)) A p) from (iii), E normal
(v) (C(p = Ep)Ap) = Cop from (iv) by RGFS

Proposition 3.5 The induction rule RGFP is derivable in the GFP axiomatics.

Proof.

(i) ¢ = E@ A p) hypothesis
(i) C(v A = E@W Ay)) from (i) by RN(C)
(i) CWAe = E@AQ)) = (P Ae = CPAp) GFP
(iv) ¥ A = CYAp) from (i), (iii)
(V) o= Ag from (i) by T(E)
(vi) ¢ = Cy from (v), (iv), C normzél

4 An alternative axiomatisation of S5 common
knowledge

Table 3 contains a new axiomatics of common knowledge. The main difference
w.r.t. the GFP axiomatics is that the induction axiom GFP is replaced by GFPO.
A further difference is that our axiomatics explicits 4(C), which is a theorem
of the GFP and RGFP axiomatics. Finally and thanks to 4(C), our version of the
fixed-point axiom FPO is weaker than FP’ (and a fortiori weaker than FP). It
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is however strong enough to entail T(C): Cy — ¢ (together with Def(E) and
Observe that it follows from Proposition 2.1 and the fact that C is a normal
modal operator that the two axioms
GFP0 C(EpVE-p) — (CpV Cp)
GFPL  C A\;cp(Kip VK;=p) = (Cp V Cp)

are equivalent. The second axiom says that if it is common knowledge that
each agent has an epistemic position w.r.t. ¢ then either ¢ or = are common
knowledge.

4.1 Soundness of the GFPO axiomatics

We prove soundness w.r.t. the S5-based GFP axiomatics of Table 2. The result
holds both for the KT-based and the S5-based version.

The inference rules are the same: RN(C) and modus ponens. It remains to
show that our axioms of Table 3 are theorems of the S5-based GFP axiomatics.
The only ones that are missing there are 4(C), FPO, and GFPO. First, 4(C) is,
by Proposition 3.1, a theorem of the KT-based GFP axiomatics and a fortiori of
the S5-based GFP axiomatics. Second, FPO can be proved from FP’ and T(C).
Third, here is a proof of GFPO that relies on T(K;), or rather, its consequence
T(E):

Proposition 4.1 GFPO is a theorem of the KT-based GFP aziomatics (and a
fortiori of the S5-based GFP axiomatics).

Proof. We distinguish the two cases ¢ and —¢ and prove that C(Ep V E-g)
implies both ¢ — Cyp and = — C—; from that GFPO follows by propositional
logic reasoning.

(i) C(EpVE-p) = C(p = Ep) by T(E), RN(C), K(C)
(ii) C(p = Ep) = (p = Cyp) GFP
(iii) C(Ep VE-yp) — (¢ — Cyp) from (i), (ii)
(iv) C(Ep V E-¢) — (mp — C—yp) from (iii) by uniform subst. of ¢ by —¢
(v) C(EpVE=-p) — (CpV Crp) from (iii), (IVD)

Therefore all theorems of our new GFPO axiomatics are also theorems of the
GFP axiomatics and, by Proposition 3.5, of the RGFP axiomatics.

4.2 Completeness of the GFPO axiomatics for S5 knowledge

We prove completeness w.r.t. the Sh-based GFP axiomatics. We have already
seen in Section 4.1 that the inference rules are the same; it remains to show
that the axioms of the S5-based GFP axiomatics of Table 2 that are not in our
GFPO axiomatics are theorems of the latter. These axioms are *5(C), FP’, and
GFP. Proposition 3.2 tells us that *5(C) can be proved from the rest of the
S5-based GFP axiomatics and is therefore redundant: it could be dropped from
the GFP axiomatics. Axiom FP’ can be proved from our FPO, 4(C), K(C), and
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RN(C). It remains to show that GFP is a theorem of our new axiomatics. The
next lemma will be instrumental; its proof uses *B(E) (via Proposition 2.2) and
4(C).

Lemma 4.2 The schema C(p — Ep) — C(—p — E—¢) is provable from the
aziom schemas K(C), 4(C), RN(C), FP, Def(E), and the S5 azioms for K;.

Proof. The proof is as follows:

(i) C(p = Ep) = E(p — Eyp) by FP, E normal
(i) E(p = Ep) = (E-Ep — E~p) E normal
(iii) ~¢ — E-E¢p Proposition 2.2
(iv) Cle = Ep) = (¢ = E—p) from (i), (i), (iii)
(v) CC(¢ = Eyp) = C(—p — E—p) from (iv) by RN(C) and K(C)
(vi) C(p — Ep) — CC(p — Eyp) 4(C)

(vil) C(p = Ep) = C(-p — E~p) from (v), (vi)
a

Proposition 4.3 GFP is provable in the GFPO axiomatics.

Proof. The proof is as follows:

(i) C(EpV E-yp) = (CpV C—yp) GFPO
(i) (C(p = Ep) A C(~p = E-p)) = C(Ep VE-p) by RN(C) and X(C)
(iii) (C(p = Ep) A C(=p — E=p)) — (Cp V C—yp) from (i) and (ii)
(iv) C(p = Ep) — C(—~¢ — E—gp) Lemma 4.2
(v) C(p = Ep) — (Cp V C—p) from (iii), (iv)
(vi) C(p — Ep) = (Cp V —p) from (v) by T(CD)

5 Commonly knowing whether

In this section we show that our axiomatics of Table 3 leads to a simple axioma-
tisation of the S5-based ‘common knowledge whether’ operator. The axiomati-
sation of such an operator was left as an open problem in [7], where operators
of ‘individually knowing whether’ were axiomatised.

The first thing we do is to extend our language of “knowing-that” operators
K;, E, and C by their “knowing-whether” counterparts. We read Kif;p as “i
knows whether ¢”; Eify as “it is shared knowledge whether ¢”; and Cifyp
as “it is common knowledge whether ”. These three epistemic operators are
particular modal operators of contingency [19,12,7].

A straightforward possibility is to add to the axiomatics of Table 3 the
following axioms:

Def1(Kif;) Kifip + (K;pVK;—p)
Def1(Eif) Eifp + (EpV E-y)
Def1(Cif) Cifp + (Cyp Vv C—p)
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CPC axiomatics of classical propositional calculus
sym(Kif;) Kifjp < Kif;—

RE(Kif;) from ¢ <> 9, infer Kif;p + Kif;1)

RN(Kif;) from ¢, infer Kif;p

Conj(Kif;) (A v) — (Kifi(ip A1) < (Kifip A Kifh))
x45, (Kif;) Kif;Kif;p

45, (Kif;)  Kifi (o A Kifip)
Def2(Eif) Eify & A;cay
Sym(Cif) Cify «» Cif-p
RE(Cif) from ¢ <> 9, infer Cify < Cif)

RN(Cif) from ¢, infer Cp

Conj(Cif) (¢ A1) — (Cif(p Atp) > (Cifyp A Cify))
x45,(Cif)  CifCifyp

*455(Cif)  Cif(¢ A Cifyp)

GFP2 Cifp « (Eifp A CifEifp)

Def2(K;) K¢+ (¢ AKifip)

Def2(E) Ey < (p A Eifyp)

Def2(C) Cyp < (¢ A Cifyp)

Kif;p

Table 4
Axiomatisation of S5 common knowledge whether: the GFP2 axiomatics.

However, we are going to take another road here, in view of axiomatising the
fragment without ‘knowing-that’ operators. Our axiomatics in Table 4 takes
the ‘knowing-whether’ operators as primitive and defines the ‘knowing-that’
operators. The first part is proper to Kif; and Eif. We might have taken over
as well the axiomatics of [7]; the principles Sym(Kif;), RE(Kif;), and RN(Kif;)
can also be found there, but we find the rest of our axioms a bit simpler than
theirs. Axiom 45; (Kif;) can be found in [19]. The second part of our axiomatics
parallels the first part and moreover has a single greatest fixed-point axiom
relating Eif and Cif (that is perhaps better called a fixed-point axiom tout
court: its syntactical form is very close to that of a possible fixed-point axiom
for common belief CB ¢ <> (EB ¢ A EB CB ¢)). The third part contains the
definitions of the ‘knowing-that’ operators.

We are going to prove soundness and completeness of the axiomatics of Ta-
ble 4 w.r.t. the S5-based GFPO axiomatics (more precisely: w.r.t. the extension
of the latter by Def1(Kif;), Def1(Eif), and Def1(Cif)).

Proposition 5.1 For the S5-based GFP2 aziomatics of Table 4, all inference
rules are derivable and all axioms are theorems in the S5-based GFPO axiomatics.

Proof. See the appendix. a

Proposition 5.2 For the S5-based GFPO axiomatics of Table 3, all inference
rules are derivable and all axioms are theorems in the S5-based GFP2 axiomatics.
Moreover, the equivalences Def1(K;), Def1(E), and Def1(C) are theorems in
the S5-based GFP2 axiomatics.
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Proof. See the appendix. a

It follows from propositions 5.1 and 5.2 that the first two parts of Table 4
provide a sound and complete axiomatisation for the fragment of the language
with only ‘knowing-whether’ operators.

Proposition 5.3 If formula ¢ has no K;, E, C operators then ¢ is a theorem
of the S5-based GFP2 axiomatics of Table 4 if and only if it is provable without
the axzioms Def2(K;), Def2(E), and Def2(C).

Proof. Suppose no K;, E, C occur in ¢ and suppose ¢ is a theorem of the
S5-based GFP2 axiomatics. Whenever the proof of ¢ uses axiom Def2(Kj;),
Def2(E), or Def2(C), we can eliminate that axiom by replacing the definiendum
by the definiens everywhere in the proof. a

We end this section by a comment on alternative definitions of ‘knowing-
whether’ group attitudes. As noted in the conclusion of [7], there are more
options than those we have considered in this section. We have chosen to define
‘shared knowledge whether’ as Eify + (Ep V E—p). However, instead of re-
quiring that everybody has the same epistemic position about ¢ one could only
require that everybody has some epistemic position about ¢. This amounts
to defining ‘weak shared knowledge whether’ by Eif“p < /\iGAgt Kif;p. At
first glance this is a less demanding notion; however, Proposition 2.1 tells us
that Eif and Eif" are equivalent as soon as KT is our basic epistemic logic.
Similarly, seemingly weaker definitions of ‘common knowledge whether’ exist.
Instead of requiring that either ¢ or -y is common knowledge, one could only
require (a) that it is common knowledge that there is shared knowledge whether
@, or (b) that it is common knowledge that there is weak shared knowledge
whether ¢. This amounts to replacing Cp V C—¢ in the definition of ‘common
knowledge whether’ either by C Eifp, or by CEif“y. Again, these two defi-
nitions appear to be weaker than ours, but this fails to be the case. This can
be seen from the theorem

GFP1 C /\ieAgt(KW VEK;—p) = (CpV Cop)

of Section 4 (end of the second paragraph) and that can be reformulated as
CEif“y — Cifp. We note that both for shared and common knowledge
whether, the two options are no longer equivalent for weaker logics, i.e., for
logics of belief. We will come back to this in Section 7.

6 Discussion: epistemic logics between KT and S5

We have seen that our new axiom GFPO is sound for logics of knowledge, un-
derstood as logics where the logic of individual knowledge is at least KT, and
that it is complete when the logic of individual knowledge is S5.

We conjecture that the KT-based GFPO axiomatics is incomplete. We how-
ever do not have a formal proof for the time being. Such a proof would have to
delve into semantics: it typically consists in designing a non-standard seman-
tics for which the axiomatics with GFPO is complete. We leave this aside for
the time being.
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Under the hypothesis that the KT-based GFPO axiomatics is incomplete,
one may wonder which axiom is missing to obtain completeness. A tempting
avenue is to add the formula C(p — Ep) — C(—¢ — E—¢) of Lemma 4.2 as
an axiom schema to the axiomatics of Table 3. The proof of Proposition 4.3
then gives us completeness because it uses none of the S5 axioms but T(K;).
However it can be shown that this amounts to adding *5(C): it can be shown
that the formula is equivalent to *5(C) in the presence of T(C).

Proposition 6.1 In the GFP-based axiomatics for KT, x5(C) and the formula
C(p = Ep) — C(—p — E—g) are interderivable.

Proof. See the appendix. a

Just as common knowledge is necessarily positively introspective even when
individual knowledge isn’t, it can still be argued that S5 common knowledge
can make sense even when individual knowledge is not S5: one can imagine,
e.g., that common knowledge is “written on a blackboard”, or otherwise easily
available to agents such that they are able to immediately verify what is and
is not commonly known. We leave further explorations to future work.

7 Discussion: GFPO is not appropriate for belief

Up to now we have only discussed common knowledge; we now briefly discuss
common belief.

Let us write B; ¢ for “¢ believes that ¢”, EB ¢ for “it is shared belief that
¢”, and CB ¢ for “it is common belief that ¢”, and let us suppose the logic of
the B; operators is KD (or, alternatively, any logic without the T axiom).

It is intuitively clear that the belief-version of GFP1,

CB )\ (B;¢VBi—p) — (CBypVCB-yp),
i€ Agt

should not hold: if there is common belief—and even common knowledge—that
everybody has an opinion about ¢ then it by no means follows that there is
common belief about (.

What about GFPO? The fact that GFP1 is unintuitive need not disqualify
GFPO. Indeed, while these two axioms are equivalent in epistemic contexts,
they fail to be so in doxastic contexts: in KD45, A, 4., (B¢ V B;—p) does
not imply EB ¢ V EB —¢, and does not do so a fortiori in KD; and therefore
the belief-counterpart of Proposition 2.1 does not hold.

As it turns out, GFPO is not a reasonable principle of common belief either.
This can be highlighted by the following example. Suppose that the set of
agents under concern is Agt = {1,2} and that there is a misunderstanding
between 1 and 2 about an inform act of a third agent. That third agent is not
relevant here, and we suppose that Agt = {1,2}. Let us suppose that 1 believes
the third agent said p and therefore believes that p is in the common ground
(B1 CB p), while 2 believes that —p is in the common ground (Bs; CB —p). It
follows by 4(CB) and by the (intuitively still valid) belief-counterpart of FPO
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that

B;CBEBpAB; CBEB —p.
As both CB and EB are normal operators, it follows that
B; CB(EBpVEB-p) AB>CB(EBpV EB—p),

i.e., that EBCB (EBp Vv EB —p). The latter is equivalent to CB (EBp V
EB —p) thanks to the belief-version of the fixed-point axiom, which is CB ¢ «+»
EBCB .

From that the counter-intuitive consequence CB pV CB —p would follow by
the belief-counterpart of GFPO.

To sum up, contrarily to the status of the standard induction principles the
status of our new versions of the induction axiom differs between knowledge
and belief: they are specific to common knowledge and fail for common belef.

8 Conclusion

We have studied the axiomatisation of the logic of common knowledge, coming
up with an alternative GFPO to the standard induction axiom principles that is
intuitively appealing as an axiom for common knowledge. While our proofs are
not very difficult, we believe that GFPO will lead to presentations of epistemic
logic that are intuitively more appealing.

Our investigation may appear somewhat old-fashioned: all our proofs are
purely syntactical and we do not use any semantical tools, as was done in
‘the syntactic era (1918-1959)’ [2, Section 1.7] before Kripke semantics was in-
vented. We nevertheless believe that axiomatic systems provide an important
toolbox to understand intuitively what a logical system is able to express and
what not. To witness, consider the inference rule RGFP: according to the expla-
nations e.g. in [24], the rule says something about ¢ indicating to everybody
that 1; however and as the equivalence with axiom GFP demonstrates, this is
not the case: axiom GFP of the equivalent GFP-based axiomatics has a single
schematic variable ¢, which shows us that the concept of one proposition indi-
cating another proposition is not accounted for by the Kripke semantics. This
is in line with the analysis of [5] where it is argued that this concept cannot
be modelled in Kripke semantics and where the authors investigate a different
semantical framework.
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Appendix
A Proofs of Section 5
A.1 Proof of Proposition 5.1

Proposition 5.1 For the S5-based GFP2 azxiomatics of Table 4, all inference
rules are dertvable and all axioms are theorems in the S5-based GFPO azxiomatics.

We prove each principle of Table 4. We start by the last three definitions
so that we can use them in the rest of the proofs.

Def2(K;) K;p < (¢ AKifip)

Proof.
(i) Kip < (oA (Kip VKi=p)) from T(K;)
(il) K;p <> (¢ AKifp) from (i) and Def1(Kif;)

|

Def2(E) Ey <> (¢ AEify)

Proof. Follow the lines of that of Def2(K;): use Defl(Eif) instead of
Def1(Kif;) and use that T(E) is a theorem. O

Def2(C) Cyp «+ (p A Cifyp)

Proof. Follow the lines of that of Def2(K;): use Def1(Cif) instead of
Def1(Kif;) and T(C) instead of T(K;). O

Sym(Kif;): Kif;p < Kif;—p

Proof.
(i) (KipVEK;—p) + (K=o VEK;~p) K; normal
(il) Kif;p < Kif;—p from (i) by Def1(Kif;)
|
RE(Kif;): from ¢ < 1, infer Kif;p <> Kif;)
Proof.

(i) p hypothesis
(i) Ko < Ko from (i), K; normal
(iil) K;—p < K;— from (i), K; normal
(iv) (Kip VK;—p) « (Ko VEK;—) from (ii), (iii)
(v) Kifip < Kif;y from (iv) by Def1(Kif;)

|
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RN(Kif;): from ¢, infer Kif;p

Proof

(i) ¢ hypothesis
(i) K from (i), K; normal
(iii) Ko VK= from (ii)
(iv) Kifp from (iii) by Def1(Kif;)

|

Conj(Kif;): (¢ Av) — (Kifi(p A ) <> (Kifip A Kifiy)))

Proof. We prove the two implications (¢ A 9 A Kifi(p A 9)) — Kifjp and
(o A AKifip A Kifiyp) — Kif; (e A ¢), each time using that we have already
proved Def2(K;) to be a theorem. For the former:

(i) Ki(p A1) = (Kip VEK;—p) K, normal
(i) (¢ A¥ AKif (o A1) — Kifip from (i), theorem Def2(K;)

For the latter:
(i) (Kip AKjh) = Ki(p A) K, normal
(i) (¢ AKifip A AKifiyh) = (o A AKifi(¢ A1) from (i), thm. Def2(K;)
(iii) (p Ay AKifp AKify) — Kif; (o A ) from (ii)
O

45, (Kif;): Kif;Kif;p

Proof. Similar to the next proof of 454 (Kif;). O

45, (Kif,): Kif; (o A Kifip)

Proof.
(i) Kip VK=oV (Ko A —K;~gp)

(ii) K;p = K;(p AKif;p) from 4(K;) and thm. Def2(K;), K; normal
(iil) K;—p — K;—=(p AKif;p) from K; normal
(iv) (-Kip A -K;—p) = (K= K;p A K;—K;—¢) from thm. *5(K;)

(v) (Ki=K;p AK;-K;—¢) — K, Kif;p from Def1(Kif;), K; normal

(vi) (=Ko A —K;—p) = K;= (o A Kif;p) from (iv), (v), K; normal
(vil) K;(p AKifp) VK;—(p A Kif;p) from (i), (ii), (iii), (vi)
(viii) Kif; (¢ A Kif;o) from (vii), Def1(Kif;)

|
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Def2(Eif): Eifp <> A\, 4, Kifip

Proof. This is Proposition 2.1. a

Sym(Cif): Cifp < Cif—

Proof. Follow the lines of that of Sym(Kif;). O

RE(Cif): from ¢ « v, infer Cifp < Cify

Proof. Follow the lines of that of RE(Kif;). O

RN(Cif) from g, infer Cp

Proof. Follow the lines of that of RN(Kif;). O

Conj(Cif) (p A1) — (Cif(p A) <+ (Cifyp A Cify))

Proof. Follow the lines of that of Conj(Kif;). O

45, (Cif) CifCify

Proof. Follow the lines of that of 45, (Kif;). O

45,(Cif)  Cif(y A Cify)

Proof. Follow the lines of that of 45, (Kif;). O

GFP2 Cify < (Eifp A CifEifp)

Proof. We prove the three implications Cifp — Eifp, Cifp — CifEifp, and
(Eifp A CifEifp) — Cifp. For the first:

(i) (CoV C—yp) = (EpV E-p) from FPO
(ii) Cify — Eifyp from (i), Def1(Eif), Def1(Cif)
For the second:

(i) Co — CEp from 4(C), FPO
(i) Cp — CEifyp from (i), Def(Eif), normal C
(iii) C—p — CEif—¢ from (ii) by uniform substitution
(iv) C-p — CEifp from (iii) by Sym(K;), Def(E)
(v) Cifp — CEifyp from (ii), (iv), Def1(Cif)
(vi) Cify — CifEife from (v), Def1(Cif)

For the third:
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(i) C(Ep VE-yp) = (CpV C—y) GFPO
(ii) CEifp — Cifyp from (i), Def1(Eif), Def1(Cif)
(iii) (Eife A CifEifp) — Cifp from (ii), thm. Def2(C)

|

A.2 Proof of Proposition 5.2

Proposition 5.2 For the S5-based GFPO axiomatics of Table 3, all inference
rules are derivable and all axioms are theorems in the S5-based GFP2 axiomatics.
Moreover, the equivalences Def1(Kif;), Def 1(Eif), and Def1(Cif) are theorems
in the S5-based GFP2 axiomatics.

We start by the last three definitions.

Def1(Kif;)) Kifip ¢« (KipV K;—p)

Proof.

(i) (Kip VK;=9) + ((p AKifip) V (—p AKif;—)) from Def2(K;)
(il) Kif;—¢ < Kif;p Sym(Kif;)
(iii) Kifip + (Ko VK;—p) from (i), (ii)

Def1(Eif) Eifp < (EpV E-yp)
Proof. Follow the lines of that of Def1(Kif;). ]
Def1(Cif) Cify > (CpV C—yp)
Proof. Follow the lines of that of Def1(Kif;). O
RN(K;) from ¢, infer K;¢
Proof.

(i) ¢ hypothesis
(il) Kif;p from (i) by RN(Kif;)
(iii) ¢ ANK;p from Def2(K;)
(iv) K;p from (iii)

|

Proof.
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(1) (¢ AKifip A (@ = ) AKifi(e = 1)) = Kifi(o A (¢ = )
from Conj(Kif;)

(ii) (¢ AKifip A (¢ = ) AKifi(9 — ¢)) — Kifi(p A1)

from (i) by RE(KIif;)

(iii) (p Ay AKif (o AY)) — Kifiy from Conj(Kif;)
(v) (9 AKifip A (9 — ) AKifi(p = ) — (b AKiEY)  from (ii), (i)
) Ki(p = v) = (Kip — Ki) from (iv) by Def2(K;)
O

TK;) Kip—¢

Proof.

(i) (¢ AKif,) — ¢

(i) Kip = ¢ from (i) by Def2(K;)
|
Proof.

(i) Kifi(p A Kifip) 45, (Kif;)
(i) Kif;K;p from (i) by Def2(K;)
(iii) Kif;—K;p from (ii) by Sym(Kif;)
(iv) Ko = (-K;p A Kif;-K; ) from (iii)
(v) Kip — K;—K,;p from (iv) by Def2(K;)

O
Def(E) Eg + /\iGAgt K;p
Proof.

(1) (p AEifp) < (9 A N;cag Kifip) from Def2(Eif)
(i) (¢ AEifp) < \;cap(v AKifip) from (i)
(iii) Ep < Ajcag Kiv from (ii) by Def2(E), Def2(Kj)

O
RN(C) from ¢, infer Cyp
Proof. Follow the lines of that of RN(K;). O

K(C) Clp—=¢) = (Cp—Cy)

Proof. Follow the lines of that of K(K;). O
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T(C) Cp—¢

Proof. Follow the lines of that of T(K;). O

FPO Cyp — Egp

Proof.
(i) (¢ A Cifp) — (p AEifyp) from GFP2
(ii) Cp — Egp from (i) by Def2(C), Def2(E)
|
GFPO C(EpV E—-p) — (CpV C—p)
Proof.
(i) (Eify A CifEifp) — Cify from GFP2

(ii) ((Ep VvV E-¢) A Cif(Ep VvV E-¢)) — Cify
from (i) by thm. Def1(Eif) and RE(Cif)
(iii) C(Ep VE—-p) — (CpV Cop) from (ii) by Def2(C), thm. Def1(Cif)
|

B Proof of Proposition 6.1

Proposition 6.1 In the GFP-based axiomatics for KT, x5(C) and the formula
C(p — Ep) = C(—p — E—p) are interderivable.

Proof. From the GFP-based axiomatics for KT and %5(C) (recall that 4(C)
is derivable from FP’, RN(C) and GFP):

(i) CC(p — Ep) — C(p — Cyp) from GFP, RN(C), K(C)
(ii) C(p — Ep) — CC(p — Ep) 4(C)
(iii) C(p — Ep) = CC(=Cyp — =) from (i), (ii) and 4(C)
(iv) C(p = Ep) = C(C-Cp — C—p) from (iii) and K(C)
(v) C(p = Ep) - C(—-Cp — C—p) from (iv) and *5(C)
(vi) C(p = Eyp) = C(—¢ — E—p) from (v), FP’ and T(C)

From the GFP-based axiomatics for KT and C(y — E¢) — C(—¢ —
E-p):

(i) C(¢ = Ep) = C(—p — E—p) hypothesis
(ii) C(Cp — ECyp) from FP’ and RN(C)
(iii) C(—-Cyp — E-Cyp) from (ii) and (i)
(iv) =Cp — C-Cyp from (iii) and GFP

a
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