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Abstract

A modal formula is almost surely valid in the finite if the probability that it is valid
in a randomly chosen finite frame with n states is asymptotically 1 as n grows un-
boundedly. This paper studies the normal modal logic MLas of all modal formulae
that are almost surely valid in the finite. Because of the failure of the zero-one law
for frame validity in modal logic, the logic MLas extends properly the modal logic
of the countable random frame MLr, which was completely axiomatized in a 2003
paper by Goranko and Kapron. The present work studies the logic MLas, provides
a model-theoretic characterisation of its additional validities beyond those in MLr,
and raises some open problems and conjectures regarding the missing additional ax-
ioms over MLr and the explicit description of the complete axiomatisation of MLas

which may turn out to hinge on difficult combinatorial-probabilistic arguments and
calculations.

Keywords: modal logic, asymptotic probabilities, almost sure frame validities, 0-1
laws, countable random frame, bounded morphisms, axiomatisation

1 Introduction: asymptotic probabilities of logical
formulae, 0-1 laws, and almost sure validities

1 What is the probability that a given modally defined property of Kripke
frames holds of a randomly chosen finite Kripke frame? What does it mean
for such a property to be ‘almost surely valid’ in finite Kripke frames? These
questions have a good intuitive sense and some potential practical importance
(to be discussed briefly further) but, as currently stated, they are imprecise
and cannot be answered in general. To make these questions precise, one has
to (at least) specify a probability distribution over the class of all finite frames.
There is no unique natural such distribution, for at least two reasons:

(i) Finite frames may be considered as labelled structures over a concrete finite
domain, e.g. a finite set of natural numbers, or as abstract, unlabelled

1 This is a long, but hopefully useful for modal logicians, introduction to the topic.
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structures, defined up to isomorphism. These two notions of a structure
define two different sample spaces (but, see further).

(ii) In either case, the result is a countably infinite space of structures, which
admits uncountably many probability distributions, and none of them can
be uniform over all finite structures, because of the countable additivity
of the probability measure.

To address the second point we will make some standard assumptions, viz
that we first relativise the question above to all finite frames (in either sense)
of a fixed size (number of possible worlds) n, all of which we assume to have
the same domain Un = {1, ..., n}. Then we consider a uniform distribution
over all frames with that domain. The latter is equivalent to assuming that
a random frame of size n is constructed by assigning with probability 1/2 an
arrow (transition) to each ordered pair of possible worlds in the domain Un.
The difference between the cases of labelled and unlabelled frames is that two
randomly constructed frames over Un that turn out isomorphic are considered
the same as unlabelled frames, but not as labelled frames, unless they are
identically labelled. Thus, one can define labelled and unlabelled probability 2

of a given frame property P to hold in a randomly chosen/constructed frame
of size n. Then we consider the asymptotic behaviour of these probabilities
and their limits as n increases without bound. If these exist, they define the
labelled (resp. unlabelled) (asymptotic) probability in the finite of the property
P . In particular, we define the respective probabilities Prl(φ) and Pru(φ) for
the frame validity of any modal formula φ. It turns out, as shown in [10] (cf.
also [18]), that these probabilities coincide. The reason for this is that

i) the property of a frame to be rigid, i.e. not to have non-trivial automor-
phisms, has asymptotic probability 1, and

ii) every rigid n-element frame has the same number, viz. n!, of non-
isomorphic labellings, whence the equality of the asymptotic probabilities.

When Pr(P ) = 1 we say that P is almost surely true in the finite, while
if Pr(P ) = 0 we say that P is almost surely false in the finite. These apply
respectively to first-order (FO) sentences, in terms of the frame properties they
define. Since in modal logic we traditionally talk about validity and non-validity
of a modal formula in a given frame, rather than truth and falsity, we say that
φ is almost surely valid in the finite when Pr(φ) = 1, while φ is almost surely
invalid in the finite if Pr(φ) = 0. See the precise technical details in Section 2.

It turns out that many natural properties of frames are either almost surely
true or almost surely false in the finite. In particular, this is the case for all
first-order definable properties, which is the celebrated Zero-one Law for first-
order logic (FOL), proved first in [13] and independently (and quite differently)
in [10]. In the latter, Fagin gave an insightful proof of the 0-1 law for the FO
logic of arbitrary relational languages of finite signature, with the case of graphs
(i.e. a single binary relation) being representative. Fagin related the almost

2 Note that computing the labelled probabilities is easy, whereas computing the unlabelled
ones is difficult, because it only counts numbers of structures up to isomorphism.
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sure truth of FO sentences on finite graphs to the FO theory of the co-called
countable random graph R (aka Radó graph) for which Gaifman had proved
in [12] that Th(R) is ω-categorical and axiomatized by an infinite set EXT
of extension axioms: sentences claiming that every n-tuple of elements in the
structure can be extended to an (n+ 1)-tuple in all possible (consistent) ways.
The probabilistic aspect of this result is rather surprising: assuming uniform
distribution, any randomly constructed countable relational structure is, with
probability 1, isomorphic to R – thus justifying the term ‘the countable random
structure’. That notion and Gaifman’s results extend 3 to any finite relational
language L. Fagin applied these results, by showing that every extension ax-
iom is almost surely true in the finite. Thus, he provided two purely logical
descriptions of the FO sentences σ of any relational language L that are almost
surely true in the finite, viz. he showed that the following are equivalent for
any FO sentence:

• σ is almost surely true in finite L-structures.
• σ follows from (finitely many) extension axioms in L.
• σ is true in the countable random structure for L.

Consequently, for every FO sentence σ, either it is in Th(R), hence almost
surely true, or its negation is in Th(R), hence σ is almost surely false; whence
the 0-1 law. Fagin’s result, which, in particular, states that almost sure truth
in the finite is equivalent to logical truth in the respective countable random
structure, is often referred to as a transfer theorem. That result sparked much
interest in the area of finite model theory and further extensive research on 0-1
laws. Such results were proved for several extensions of first-order logic, incl:
the extension FOL+LFP of FOL with fixed point operators, in [6]; later sub-
sumed by the 0-1 law for the infinitary logic over bounded number of variables
Lω
∞,ω, in [23]; for some prefix-defined fragments of monadic second-order logic

[22], where also strong relations were established between decidability and 0-1
laws of such fragments, etc. Most of these results were proved, like Fagin’s
result, by a means of suitable versions of the transfer theorem. For a popular
and very readable exposition of 0-1 laws in FOL and some extensions see [18],
and for such results in fragments of Σ1

1 see [24].
On the other hand, the 0-1 law easily fails in the presence of a single constant

in the language (consider a sentence saying that a given unary predicate is true
at the element interpreting that constant) 4 . In second-order logic the 0-1 law

3 A model-theoretic aside: the random graph R is a particular example of a countably infinite
homogeneous structure that can be constructed as a Fräıssé limit of a family of sets of finite
structures satisfying certain natural closure properties. There are deep model-theoretic con-
nections between homogeneous (more generally, homogenizable) structures, extension proper-
ties, asymptotic probabilities and almost sure theories, that generalise Gaifman’s and Fagin’s
results and enable further relativisations and refinements of 0-1 laws (and more generally,
limit laws), which go beyond the scope of this paper, so I refer the reader e.g. to [25], [2],
and further references therein.
4 Still, it was proved in [30] that a first-order language with only unary functions does have
a limit law, in sense that every sentence in that language has an asymptotic probability,
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fails badly: think, for instance, of the property of having an odd number of
elements. Even its monadic existential fragment MΣ1

1 contains sentences with
no asymptotic probability, as first proved by Kaufmann (see [27] for a very
accessible account of Kaufmann’s counterexample, and [28], [29] for stronger
such results). While for prefix-defined fragments of MΣ1

1 the boundary of 0-1
laws seems to be essentially delineated (see [24] for a survey), little is known
in general on that for the full (monadic) second-order logic (M)SOL.

Now, what about modal logic? There are at least two basic relevant notions
of modal validity: in Kripke models and in Kripke frames. In the former case
the 0-1 law follows immediately from 0-1 law in FOL, since validity of a modal
formula in a Kripke model is a FO property [19]. However, for the case of
frame validity, which is an essentially universal monadic second-order (MΠ1

1)
property, the 0-1 law cannot be claimed as a consequence of Fagin’s theorem.
Actually, that 0-1 law was claimed to be proved (by complex combinatorial-
probabilistic calculations) in [19]. However, later it was proved in [14] that the
respective transfer theorem fails for modal frame validity in the finite, which
then cast a doubt on the 0-1 law, too. Indeed, that claim turned out to be
wrong, as proved by Le Bars in [29], who provided there a very non-trivial
counterexample. Soon thereafter, an erratum [20] was published, pointing out
the mistake in [19].

A relatively independent from the 0-1 laws concept, which is in the focus
of the present work, is the almost sure theory Thas

L of a given logical language
L, with respect to the notion of truth or validity under consideration – that is,
the set consisting precisely of those sentences of L that are almost surely true
(resp. valid) in the finite. Clearly, Thas

L is a well-defined logical theory in a
very traditional sense: it contains all valid sentences of the logic and is closed
under all finitary rules of inference (as the semantic consequence preserves
truth and the asymptotic probability measure is finitely additive). What can
one say about the theory Thas

L , in terms of axiomatization and deduction in it,
decidability, model-theoretic properties, etc?

The cases of classes of FO structures where 0-1 laws holds by way of transfer
theorem are generally easy to analyse thoroughly, because in these cases Thas

L

is precisely the (ω-categorical and complete, hence decidable) theory of the
countable random structure (resp. universal homogeneous structure. cf. [25],
[2], [1]). Curiously, as shown in [19], the respective modal logic of almost
sure Kripke model validity, turned out to be already known, viz. Carnap’s
modal logic ([7]), the axioms of which are all modal formulae ♦φ where φ is a
satisfiable propositional formula. (NB: this is not a normal modal logic, as it
is not closed under substitutions.)

However, in cases where 0-1 law fails, or when it holds but not by a suitable
transfer from a countable random structure, the question of logical character-
isation and, in particular, axiomatization of the respective almost sure theory
seems generally quite difficult, and very few such results are known. This ques-

though in general not just 0 or 1.
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tion arises, in particular, for the modal logic of almost sure frame validity in
the finite, hereafter denoted by MLas, and it is the topic of the present study.

What do we know about MLas so far? Both much and little. We know
that it is a normal modal logic, extending the normal modal logic MLr of
the countable random frame Fr (the frame analogue of the countable random
graph R). The logic MLr was studied and axiomatized in [14] where it was also
proved to be strictly included in MLas. (See details in Section 3.) What is not
known yet is how the additional axioms, needed to extend the axiomatization
of MLr to a complete axiomatization of MLas, look, and even whether MLas

is recursively axiomatizable. Such questions are inherently difficult, because
MLas lacks a priori explicit logical semantics in terms of truth and validity in
a specific class of models or frames, but rather involves the class of all finite
frames as a whole, so it is an essentially global concept. In this paper I study the
logic MLas, provide partial answers to these questions, and raise conjectures
for their solutions.

Lastly, why should one be interested in MLas, or in any almost sure theory?
Besides being driven by a sheer intellectual curiosity, one can argue that know-
ing – or being able to identify – the almost sure truths in a given logic may
have some practical advantages, e.g. for reducing the average case complexity
of checking whether a given formula of that logic is valid, by first checking
(or, guessing) whether it is almost surely valid. While such argument would
probably not make good computational sense for the basic normal modal logic,
it may do so for some extensions that are of higher computational complexity,
have no finite model property, or are even undecidable. The idea certainly
sounds quite reasonable in the case of FOL, which is not only undecidable, but
satisfiability of FOL sentences in the finite is not even recursively enumerable
(by Trachtenbrot’s theorem), whereas the almost sure theory of FOL, being the
same as Th(R), is decidable, and in fact only PSPACE-complete, as proved in
[17]. Similar argument might work for other extensions of FOL and (M)SOL,
too. As for MLas, it seems still early to judge whether and what its practical
importance may be. One immediate goal of this paper is to at least attract the
attention of the modal logic community to this logic.

The paper is organized as follows. After this long introduction and brief
technical preliminaries in Section 2, I introduce and compare the logics MLr

and MLas in Section 3. In Section 4, I explore the question of axiomatization
of MLas and raise some open problems and conjectures. I conclude briefly in
Section 5.

2 Preliminaries on modal logic, asymptotic probabilities
and almost sure frame validity

Here I provide some technical details on the basic concepts in this paper intro-
duced informally in the introduction. Besides, I assume that the reader has the
necessary background in modal logic, including the notions of Kripke model,
Kripke frame, truth and validity of modal formulae in these. Familiarity with
some basics of the model theory of modal logic, incl. bounded-morphism (aka
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p-morphism) and characteristic (aka Jankov-Fine) formulae would be helpful,
but for the reader’s convenience I have included the definitions here.

2.1 Bounded morphisms and characteristic formulae

Definition 2.1 Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be frames. A mapping
h : W1 →W2 is a bounded morphism from F1 to F2 if the following hold:

(i) For all x, y ∈W1, if xR1y then h(x)R2h(y).

(ii) For all x ∈ W1, t ∈ W2, if h(x)R2t then xR1y for some y ∈ W1 such that
h(y) = t.

If h is onto, F2 is called a bounded-morphic image of F1.

Following a commonly used notation, I will often denote by F1 � F2 the
claim that F2 is bounded-morphic image of F1. An important fact: frame
validity of modal formulae is preserved in bounded-morphic images, i.e., if
F1 |= φ and F1 � F2, then F2 |= φ (cf. [35], [5], and [15], which are also
recommended general references on all other modal logic concepts used here).

The universal modality (interpreted by the full Cartesian square of the
domain, cf. [16]) will be denoted by [U], its dual, existential modality – by
〈U〉, and the basic normal logic K extended with [U] – by KU. The language
of K will be denoted by ML and the extended one with [U] – by MLU.

Definition 2.2 ([14]) Let F = 〈W,R〉 be any finite frame with W =
{w1, . . . , wn} and let {p1, . . . , pn} be fixed different propositional variables.
The characteristic formula 5 of F over 〈p1, . . . , pn〉 is the formula
χF(p1, . . . , pn) := ¬[U]δF(p1, . . . , pn), where δF is the ‘modal diagram’ of F:

δF(p1, . . . , pn) :=

n∧
i=1

〈U〉pi ∧
n∨

i=1

pi ∧
∧

1≤i 6=j≤n

(pi → ¬pj) ∧

∧
1≤i,j≤n

{pi → ♦pj |wiRwj} ∧
∧

1≤i,j≤n

{pi → ¬♦pj |¬wiRwj}.

When {p1, . . . , pn} are fixed or known from the context, I will write simply χF.

The following is a variation of a folklore fact (see Remark 2.5). I nevertheless
sketch a proof, for the sake of the reader hitherto unfamiliar with it.

Lemma 2.3 ([8], [14]) For every frame G and finite frame F: G � F iff
G 6|= χF.

Proof. (Sketch) Suppose G, V 6|= χF for some valuation V . Then every point
y ∈ G satisfies exactly one variable pi(y) from {p1, . . . , pn}. Furthermore, the
mapping f : G −→ F defined by f(y) = wi(y) is a surjective bounded morphism.
Vice versa, if f : G −→ F is a surjective bounded morphism, then the valuation
V on G defined by V (pi) = f−1(wi) satisfies ¬χF. 2

5 See Remark 2.5.



Goranko 255

When both F and G are finite, the lemma above can be strengthened to the
claims of the forthcoming Lemma 2.4, where ML(F) is the normal modal logic
of the validities in the frame F and KU + φ is the axiomatic extension of the
modal logic KU with the axiom scheme φ.

Lemma 2.4 ([37]) For any finite frames F, G the following are equivalent:

(i) G � F.

(ii) G 6|= χF.

(iii) ML(G) ⊆ML(F).

(iv) KU + χF ` χG.

(v) For every modal formula φ, if KU + χG ` φ then KU + χF ` φ.

Proof. Most of these equivalences are straightforward variations (involving
[U]) of widely known and frequently re-discovered facts, that can be found
scattered elsewhere (cf. [8] for most of them). One implication is not completely
trivial, viz. the implication from (i), (ii), or (iii) to (iv). As noted in [37], the
implication from (ii) to (iv) holds in a more general form, viz. for any formula
φ instead of χF, with essentially the same proof as for this special case which
suffices for our purpose. As [37] has pointed out, the same claim was proved
for intuitionistic logic in [33], itself referring to earlier works by Jankov. For
further references and more, see the forthcoming Remark 2.5. Nevertheless, I
provide here a proof sketch, to make the presentation relatively self-contained
for readers not familiar with the more general theory, and also to help them
see why this result holds, because it is of importance for the logic MLas, as
discussed in Section 4.

(i) ⇒ (iv): Suppose G � F and fix a bounded morphism h : G → F.
Let F = 〈WF, RF〉 with WF = {w1, ..., wn} and G = 〈WG, RG〉 with WG =
{u1, ..., um}. Suppose χF = χF(p1, . . . , pn) = ¬[U]δF(p1, . . . , pn) and χG =
χG(q1, . . . , qm) = ¬[U]δG(q1, . . . , qm). Let us define a substitution σh on the
propositional variables p1, ..., pn as follows: for each i = 1, ..., n, σh(pi) :=∨
{j|h(uj)=wi} qj . Intuitively, if we regard p1, ..., pn as nominals for w1, ..., wn

and q1, ..., qm respectively as nominals for u1, ..., um then σh substitutes each
pi with the syntactic description of the inverse image of wi in G under h.
Now, let us apply σh to χF(p1, . . . , pn) and denote the resulting formula by
ξG→F(q1, ..., qm). After simple equivalent transformations in KU, for which
there is no space here (but, see them illustrated on an example in the Appendix)
ξG→F(q1, ..., qm) is transformed to a formula ξ′G→F(q1, ..., qm) of the type ¬[U]δ′F,
where δ′F is a (long) conjunction with the following property, which can be
seen by direct inspection: every conjunct in δ′F is either identical, or follows
propositionally (essentially by only applying A → B |= A → (B ∨ C)) from
a conjunct in δG(q1, . . . , qm). Thus, |= δG → δ′F, hence |= [U]δG → [U]δ′F,
Thus, |= ¬χG → ¬ξ′G→F, hence |= ξ′G→F → χG. Equivalently, |= σh(χF) → χG.
Therefore, KU ` σh(χF)→ χG, by completeness of KU, hence KU + χF ` χG.2
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Remark 2.5 The characteristic formulae defined here 6 are simplified (due to
the availability of the universal modality) variations of the widely called Jankov-
Fine formulae, cf. [8, Ch. 9.4]. Such formulae were introduced independently
by V.A. Jankov in 1963 [21] (for the intuitionistic logic and finite Heyting
algebras) and by D. de Jongh in his 1968 doctoral thesis (for the intuitionistic
logic and finite intuitionistic Kripke frames). Their modal logic analogues were
invented later, by K. Fine in 1974 [11] for modal logics extending S4 and finite
modal algebras, and by W. Rautenberg [31] for modal logics extending K4 and
finite Kripke frames. These formulae are at the core of the so called splitting
techniques and results, initially developed by Jankov (for Heyting algebras),
McKenzie (for splitting lattices), Blok, Rautenberg, Kracht, Wolter and others
(for splitting lattices of modal logics); see [4] for references. In particular,
such formulae were later used by Rautenberg [31] to axiomatize modal logics
of finite frames, and generalised and applied further by Kracht [26] and by
Zakharyaschev to what he called ‘canonical formulae’ in [8], used to axiomatize
any normal extension of K4. For an algebraic treatment of canonical formulae,
see [3].

Thus, the results listed in lemmas 2.3 and 2.4 are essentially not new and
apply in a much more general setting 7 .

2.2 Asymptotic probabilities and almost sure frame validity in the
finite of modal formulae

The class of all finite frames will be denoted by Ffin. Given a modal formula
φ, the MΠ1

1-formula expressing the frame condition defined by φ (or, any FO
sentence equivalent to it, if that frame condition is first-order definable) will be
denoted by FC (φ), and for any class of finite frames F , the subclass of frames
in F where φ is valid – by F(φ). The set of positive integers is denoted by N.

Given n ∈ N, let Un := {1, . . . , n}. A random (labelled) frame of size
n is a frame F = (Un, R) obtained by random and independent assignments
of truth/falsity of the binary relation R on every pair (x, y) from the set Un,
with probability for truth p(n). The probability space on all n-element frames
constructed as above will be denoted by S(n, p). In this paper I assume p(n)
to be the constant 0.5, so the random frame can be obtained by a random
assignment of a binary relation on the domain, using uniform distribution.
However, the results used and those obtained here hold likewise for any constant
probability p ∈ (0, 1) (cf. [10], [18]).

For any property of frames P , by µn,p(P ) we denote the classical probability
of P in S(n, p), i.e. the probability that P holds for a randomly constructed
n-element frame. In particular, if φ is a first-order sentence or a modal formula,
µn,p(φ) will denote the probability for φ to be true (resp. valid) in a frame from
S(n, p). Note that these are discrete probabilities since S(n, p) is finite.

6 I prefer to work with these formulae, rather than with their negations, as defined in [5],
for reasons that will become clear in Section 4.
7 Thanks to Evgeny Zolin [37] for pointing out these links and references.
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Now, let us define µp(φ) := limn→∞ µn,p(φ). If that limit exists, it will be
called the asymptotic probability 8 (in the finite) of φ. As the probability
is fixed here to p = 0.5 we will omit the subscript. We define likewise µp(P )
and µ(P ) for any frame property P . A property P is said to be almost surely
true in the finite if µ(P ) = 1 and, respectively, almost surely false if µ(P ) = 0.

Definition 2.6 A modal formula φ is said to be almost surely valid (in the
finite) if µ(φ) = 1; respectively, almost surely invalid if µ(φ) = 0.

Note that, by the 0-1 law for FOL, every first-order definable modal formula
is either almost surely valid or almost surely invalid in the finite. Moreover 9 ,
this also holds for all modal formulae that define FO property on finite frames.
For instance, Gödel-Löb formula 2(2p → p) → 2p defines in the finite the
class of irreflexive and transitive finite frames (cf. [8]); thus it also satisfies the
0-1 law (being almost surely invalid).

Hereafter, for technical convenience we will assume w.l.o.g., that every fi-
nite frame of size n that we consider is defined over the set Un = {1, . . . , n}.
Thus, the collection of all finite frames Ffin can be regarded as a proper set.
Now, given any set of finite frames F which contains at least one frame of every
(sufficiently large) size n, the probabilities and concepts defined above read-
ily relativise to F , incl. a modal formula being almost surely valid (resp.
invalid) in F . Further, we say that a set of finite frames F has an asymp-
totic measure 1 (resp. 0) if the membership to that set has asymptotic
probability 1 (resp. 0). An important observation is that for every set with
asymptotic measure 1 the absolute and relativised probabilities are equal, hence
the absolute and relativised notions of almost sure validity/invalidity coincide.

2.3 The countable random frame Fr

The construction of random frames by means of a random pairwise assignment
of a binary relation with a given probability p for truth of the relation can be
performed on infinite sets, too. The outcome of such a random construction
on the set N of natural numbers is called a countable random frame. Using
combinatorial-probabilistic argument, it was proved in [10] that any countable
random relational structure satisfies with probability 1 an infinite sequence
EXT of schemes of first-order sentences, called extension axioms. For every
n ∈ N, the extension axiom (EXT)n for frames (directed graphs with loops)
is the conjunction of finitely many sentences, each involving a tuple of n dis-
tinct variables x = x1, ..., xn plus another variable y and parameterised by two
subsets I, J ⊆ Un, as follows:

(EXT)n = ∀x∃y

∧
i 6=j

xi 6= xj →

( ∧
i∈Un

xi 6= y ∧ T (y, y)∧

8 Note that this probability measure is not countably additive: µ(|F| = n) = 0 for every
fixed n, while µ(∃n(|F| = n)) = 1.
9 Thanks to Evgeny Zolin [37] for this added remark.
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∧
i∈I

Rxiy ∧
∧

i∈Un\I

¬Rxiy ∧
∧
i∈J

Ryxj ∧
∧

j∈Un\J

¬Ryxj

 ,

where T (y, y) is either Ryy or ¬Ryy,
The extension axiom (EXT)n, intuitively says that for every n different

points in the frame there is a point which is related to and from each of those,
and with itself, in any explicitly prescribed way. Note that if m < n then
(EXT)n implies (EXT)m on all frames of size at least n. Consequently, every
finite set of extension axioms follows almost surely in the finite from a single
extension axiom (EXT)n for a large enough n.

By a result of Gaifman [12] the theory EXT is consistent and ω-categorical,
hence complete. The unique countable model Fr of EXT is called the count-
able random frame. Using Gaifman’s results, Fagin proved (for graphs) in
[10] the following transfer theorem that for any sentence ψ of FOL:

(i) If Fr |= ψ then µ(ψ) = 1.

(ii) If Fr 6|= ψ then µ(ψ) = 0.

This theorem immediately implies the 0-1 law for FOL for frames: every FO
sentence is either almost surely true or almost surely false in the finite. Then,
by compactness, every almost surely true FO sentence follows from finitely
many extension axioms, hence from some instance of (EXT)n. These claims
apply likewise to all FO definable (in terms of frame validity) modal formulae.

3 The modal logics of the countable random frame and
of almost sure validity

Here we will explore the two normal modal logics in the focus of this study.
Most of the content of this section comes from [14], but is included here for the
reader’s convenience and self-containment of the paper.

Definition 3.1 MLr is the modal logic of all formulae valid in Fr. MLas is
the modal logic of all formulae which are almost surely valid in the finite.

Proposition 3.2 ([14])

(i) MLr and MLas are normal modal logics.

(ii) A modal formula φ is in MLr iff FC (φ) follows from some extension
axiom, hence every such formula is in MLas. Consequently, MLr ⊆MLas.

3.1 Complete axiomatization of MLr

First, we need some basic facts about the countable random frame Fr, which
easily follow from the extension axioms (cf. [14]):

• Fr has a diameter 2: every point can be reached from any point (incl. itself)
in 2 R-steps. Indeed, by an instance of the extension axiom scheme (EXT)3:
Fr |= ∀x∀y∃z(Rxz ∧Rzy).

• Every point in Fr has infinitely many R-predecessors and infinitely many
R-successors and every finite frame is embeddable as a subframe in Fr.
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For some useful validities and non-obvious non-validities in MLr, see [14].
Since the extension axiom (EXT)3 is almost surely true in the finite, the

subset Fd2 of all finite frames of diameter 2 has asymptotic measure 1. This
fact will be of crucial importance further, because it enables us to restrict
attention from Ffin to almost sure validity in Fd2 without extensional change
of that notion: every property of finite frames is almost surely true in Ffin iff
it is almost surely true in Fd2. Here is the first important consequence. Note
that the universal modality [U] and the existential modality 〈U〉 are simply
definable in every frame in Fd2:

[U]p ≡ ��p, respectively 〈U〉p ≡ ♦♦p.

Therefore, these equivalences hold in almost every finite frame, and also in Fr.
Hereafter, to distinguish the primitives from the definable versions wherever
necessary, I use [U] and 〈U〉 as the standard universal/existential modalities,
taken as primitives (extending ad hoc the basic modal language) and [U] and
〈U〉 when referring to the operators in the basic modal language defined by the
equivalences above. Respectively, MLr

U and MLas
U will denote the extensions

of MLr and MLas to the language MLU. Note, that every formula φ of MLU

is trivially translated into a formula φd of the basic language ML by replacing
all occurrences of [U] and 〈U〉 respectively with [U] and 〈U〉. The important
property of that translation is that φ and φd are equivalent, hence equally valid,
in every frame from Fd2, hence in almost every finite frame, which will suffice
for our purposes. In particular, every axiom in MLas

U generates its translated
axiom in MLas, which will enable me to state most of the claims and results
about MLas in the language MLU and for MLas

U , with the understanding that
they apply accordingly to the logic MLas of my primary interest.

Theorem 3.3 ([14]) The following axiomatic system Ax(MLr) is sound and
complete for MLr (recall that [U] and 〈U〉 are the defined operators):

(MLr
1) K: �(p→ q)→ (�p→ �q).

(MLr
2) [U]p→ p.

(MLr
3) [U]p→ [U]�p.

(MLr
4) p→ [U]〈U〉p.

(MLr
5) Scheme MODEXT, consisting of the following axioms for each n ∈ N:

MODEXTn =

n∧
k=1

〈U〉(pk ∧�qk)→ 〈U〉
n∧

k=1

(♦pk ∧ qk).

The first 4 axiom schemes above come from the axiomatization of KU ([16]).
It is easy to see that the axiom MODEXTn is valid in a frame F ∈ Fd2 iff for
every n points w1, . . . , wn in F there is a point u that is R-reachable from each
w1, . . . , wn, and each of them is R-reachable from u. This holds for every finite
frame, with [U] and 〈U〉 replaced by the primitives [U], 〈U〉. Thus, MODEXT
is the modally definable approximation of the extension axioms EXT for FOL.
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Proposition 3.4 ([14]) MLr has the finite model property and is decidable,
but it is not finitely axiomatizable.

Thus, Ax(MLr) derives the ‘well-behaved’ formulae in MLas, viz. those
that follow from the extension axioms of FOL. As we will see in Prop.4.1,
these include all first-order definable formulae in MLas. What about the rest?
Maybe, that is all and the logics MLrand MLascoincide? It turns out, the
answer, rather surprisingly on the background of Fagin’s Transfer theorem, is
‘No’, as shown further. To see that, we need to learn more about Fr and MLr.

3.2 Kernels in finite frames and in Fr.

Every bounded morphic image F of a given frame G determines a kernel parti-
tion PF in G, defined as follows. Given a bounded morphism h : G→ F, where
F = 〈WF, RF〉 and G = 〈WG, RG〉, the kernel partition PF(G) in G consists
of the family of clusters {h−1(w) | w ∈ WF}. Thus, PF(G) is generated by the
equivalence relation ∼h in WG, where u ∼h v holds iff h(u) = h(v). It sat-
isfies the following properties, determined by F and the definition of bounded
morphism. For any two clusters X = h−1(x) and Y = h−1(y) in PF(G), either

(i) for each u ∈ X there is v ∈ Y such that uRGv, (when xRFy holds),
or

(ii) for no u ∈ X there is v ∈ Y such that uRGv (when xRFy does not hold).
Conversely, for every kernel partition in G generated by mapping h : G→ F

and satisfying the conditions (i) and (ii) above, the mapping h is a bounded
morphism from G onto F.

Thus, kernel partitions are an equivalent, and often more visually intuitive
way of describing bounded morphisms. Note that existence of a kernel partition
with specific FO-definable properties in a frame, like those above, is a MΣ1

1-
property and, as stated in lemma 2.3, the existence of the kernel partition
determined by F in a (randomly selected) frame G is characterised by the non-
validity of the respective χF in that frame. Thus, using existence or non-
existence of kernel partitions one can show the non-validity or validity in a
given frame of various formulae that are not first-order definable. Here I will
give two very simple examples, that will suffice to distinguish MLr from MLas.
Consider the following two frames:

K2 = 〈{x, y}, {(x, x), (x, y), (y, x)}〉 and
K3 = 〈{x, y1, y2}, {(x, x), (x, y1), (x, y2), (y1, x), (y2, x)}〉.
(Note that K2 is a bounded morphic image of K3.)

K2

x y

x

K3 y1

y2

It turns out that the kernel partition PK2
that K2 generates in any frame
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G for which K2 is a bounded morphic image corresponds to the well-known
notion of a kernel in digraphs (cf.[9] but, taking into account that frames
are digraphs with loops), whereas the kernel partition that K3 generates is
called double kernel in [14] (see details there). Thus, the ML-translated
characteristic formula χd

K2
(resp. χd

K3
) is valid precisely in those frames in Fd2

which do not have kernels (resp. double kernels). Here are slightly simpler
equivalent formulae, where the falsifying valuation of p, (resp. p and q), in any
frame with a kernel (resp. double kernel) is that kernel (resp. each of the two
sub-kernels).

NO-KER = 〈U〉(p↔ ♦p),
NO-DKER = 〈U〉((p ∨ q) ∧ ♦(p ∨ q)) ∨ 〈U〉(¬(p ∨ q) ∧ (�¬p ∨�¬q)).

3.3 The finite frames of MLr.

Even though MLr is defined as the logic of the single infinite frame Fr, it does
have finite frames, as evident from Prop. 3.4. It turns out that they are very
simple to describe, as precisely those finite frames that have a ‘central point’
– a point which is R-related to and from every point (incl. itself). Formally,
given a frame F = 〈W,R〉, a point x ∈ W is a central point in F if Rxy and
Ryx hold for every y ∈ W . The existence of a central point is forced by the
axiom scheme MODEXT, and every frame with central point is easily seen to
validate MODEXT. Note that both K2 and K3 above have central points.

Proposition 3.5 ([14], Lemma 2.4) For every finite frame F the following
are equivalent.

(i) F |= MLr

(ii) F has a central point.

(iii) F is a bounded-morphic image of Fr.

(iv) Fr 6|= χF.

(v) F can be obtained from Fr by filtration.

In particular, K2 and K3 are bounded morphic images of Fr, hence both χK2

and χK3 fail in Fr, i.e. Fr has a kernel and a double kernel.

Corollary 3.6 For every finite frame G without central point: Fr |= χG, and
hence existence of kernel partition PG is almost surely false in the finite.

Thus, Corollary 3.6 provides plenty of (generally) non-first-order definable
modal formulae in MLr

U, respectively in MLr.

Here is the main technical result in [14], proved by a non-trivial
combinatorial-analytic estimation of the expected number of double kernels
in a random finite frame from Fd2.

Theorem 3.7 ([14]) Existence of a double kernel is almost surely false in
finite frames. Consequently, χK3 is almost surely valid, hence it is in MLas.

Thus, χK3
∈ MLas but χK3

/∈ MLr, hence the inclusion MLr ⊂ MLas is
proper. Also, Fagin’s transfer theorem fails for frame validity in modal logic.
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The technique used in the proof of Theorem 3.7 did not help the authors
of [14] to prove the same results for single kernels and χK2

, and these were left
as open questions there. They were proved a little later by Le Bars in [29]. He
also proved there that the 0-1 law fails for frame validity in modal logic, by
showing that a modified kernel property, defined by the formula

MODAL-KERNEL : ¬p ∧ q ∧��((p ∨ q)→ ¬3(p ∨ q))→ 3�¬p

has no asymptotic probability in the finite.

4 On the axiomatization of the modal logic MLas

What axioms are needed to add to Ax(MLr) in order to axiomatize completely
MLas? We explore this question here, starting with some useful observations.
For technical convenience, most of the results will be stated for MLas

U , instead of
MLas, but they are readily translated to MLas. I will denote by Ax(MLr

U) the
axiomatic system Ax(MLr) where [U] and 〈U〉 are replaced by the primitives
[U] and 〈U〉, with the relevant axioms added (cf. [16]).

4.1 Towards understanding the logic MLas

Proposition 4.1

(i) Every first-order definable modal formula which is in MLas is also in MLr.

(ii) ([14]) Every modal formula φ in MLas that defines a purely universal
frame condition FC (φ) is valid.

Proof. (i) If φ ∈ MLas and φ is first order definable, then FC (φ) is almost
surely true in the finite, hence it follows from an extension axiom. Therefore,
φ ∈MLr, by Proposition 3.2[ii].

(ii) Suppose φ is not valid. Then ¬φ is satisfiable in a finite frame F. The
satisfiability of ¬φ is an existential property, hence preserved in extensions. As
F is embeddable in Fr, ¬φ is satisfiable there, too, which contradicts (i). 2

So, the missing axioms are neither first-order definable, nor purely universal.

More notation: Given a (possibly infinite) set of frames F , a set of formulae
Γ, and a formula φ, we denote by Γ |=fr

F φ the claim that φ is valid in every
frame from F in which all formulae of Γ are valid 10 . When F is the class of
all frames I will write simply Γ |=fr φ and when F = Ffin I will write Γ |=fr

fin φ.
When Γ = {ψ}, I will write just ψ |=fr

F φ, respectively ψ |=fr φ and ψ |=fr
fin φ.

I denote by BM−1(F) the set of finite frames G (over N) such that G � F.

Note that MLas (resp. MLas
U ) is closed under |=fr

fin. Now, what are the finite
frames for MLas like? (Note that they are the same as those for MLas

U .) A
partial answer follows, that essentially employs for our purpose more general
facts listed in Lemma 2.4.

10This consequence relation is generally not arithmetically definable, hence not recursively
axiomatizable, as first shown in [34] by reduction from logical consequence in second-order
logic, cf. also discussion in [35]. However, we are only interested here in very special cases of
that consequence relation, so no general results can be assumed a priori to hold.
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Proposition 4.2 For every finite frame F and a modal formula φ ∈ MLU:

(i) F 6|= φ iff φ |=fr
fin χF iff φ |=fr χF.

(ii) F |= MLas
U iff χF /∈MLas

U .

Proof. (i) Let F 6|= φ. Then G 6|= φ for every frame G such that G � F.
Therefore, for every G such that G |= φ, it follows that G 6� F, hence G |= χF.
Thus, F 6|= φ implies φ |=fr χF. Further, φ |=fr χF obviously implies φ |=fr

fin χF.
Lastly, if φ |=fr

fin χF then F 6|= φ because F 6|= χF.
(ii) By contraposition, if χF ∈ MLas

U then F 6|= MLas
U because F 6|= χF.

Conversely, take φ ∈MLas
U . If F 6|= φ then φ |=fr

fin χF by (i), so χF ∈MLas
U . 2

From Proposition 4.2 we immediately obtain the following useful fact.

Corollary 4.3 For any finite frame F and φ ∈MLas
U , if F 2φ then χF∈MLas

U .

Proposition 4.4 For any finite frames F,G:

(i) G � F iff χF |=fr
fin χG.

(ii) Moreover, if χF |=fr
fin χG then KU + χF ` χG.

Proof.
(i) Directly from Lemma 2.3 and Proposition 4.2.(i)
(ii) By (i) and Lemma 2.4. Also, χd

G is derived in the same way in the
respectively axiomatized version K[U] +χd

F in ML as sketched in Lemma 2.4.2

As noted in the proof of Lemma 2.4, Proposition 4.4(ii) holds likewise for
any formula φ instead of χF, but the greater generality seems to be of no use
in our case, as all conjectured axioms of MLas

U over MLr
U are of the type χF,

so the respective conjectured axioms of MLas over MLr are of the type χd
F.

4.2 Towards axiomatizing the logics MLas
U and MLas

From the observations made so far we see that natural candidates for additional
axioms of MLas

U over Ax(MLr
U) are the almost surely valid formulae of the type

χF for frames F with central point (recall Corollary 3.6). So, let C be the set
of all finite frames with a central point. Note that C ⊆ Fd2. Let

Ξas
U := {χF | F ∈ C and χF ∈MLas

U }.

Then, let Ξas be the set of translated axioms in ML.
The following conjecture, stated in two equivalent versions, seems natural.

Conjecture 4.5 Ax(MLr
U) ∪ Ξas

U axiomatizes MLas
U .

Respectively, Ax(MLr) ∪ Ξas axiomatizes MLas.

Let us first make an encouraging observation in support of that conjecture.
I state the version for MLas

U ; the one for MLas is completely analogous.

Proposition 4.6 For any φ ∈MLas
U :

(i) Ξas
U (φ) |=fr

C φ, where Ξas
U (φ) = Ξas

U ∩ {χF | φ |=fr
fin χF}.

(ii) MLr
U ∪ Ξas

U |=fr
fin φ.
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Proof. Take φ ∈MLas
U and any finite frame F such that F 2 φ.

Then, by Corollary 4.3, χF ∈MLas
U . Now:

(i) If F ∈ C then F 2 Ξas
U (φ) because F 2 χF and χF ∈ Ξas

U (φ).
(ii) Consider two cases:
– If F ∈ C then F 2 MLr

U ∪ Ξas
U by (i).

– if F /∈ C then F 2 MLr
U ∪ Ξas

U because F 2 MLr
U.

Thus, in either case, F 2 MLr
U ∪ Ξas

U .
By contraposition, if F � MLr

U ∪ Ξas
U then F � φ.

Hence, MLr
U ∪ Ξas

U |=fr
fin φ. 2

The proposition above provides a model-theoretic characterisation of the
additional validities of MLas

U (resp. MLas), beyond those in MLr
U (resp. MLr).

Still, there are two major issues with proving Conjecture 4.5, if true at all:

(i) How to identify the axioms in Ξas
U ?

(ii) How to prove the completeness?

On the first question, let us first make the task a little easier by noting that,
due to Corollary 4.3, we only need to identify the axioms χF for the minimal
frames F ∈ C such that χF ∈ MLas

U , where ‘minimal’ is in sense (cf. Propo-
sition 4.4) that there is no F′ ∈ C such that χF′ ∈ MLas

U and F ∈ BM−1(F′),
but F 6∼= F′. Equivalently, we are looking for the maximal sets of frames of the
type BM−1(F) for F ∈ C which have asymptotic measure 0. For that, the mem-
bership in BM−1(F) should almost surely contradict (EXT); equivalently, χF

should follow from (EXT). Being a MΠ1
1-condition, by compactness χF should

then follow from some (EXT)n, hence some extension axiom ηF should fail in
all frames in BM−1(F). To ensure the latter, one should naturally look for ηF

that fails in F but is preserved in bounded morphic images, so it must fail in
all frames from BM−1(F). A classic result by van Benthem [35, Thm 15.11]
characterises the first-order sentences in the language with = and R that are
preserved by bounded morphisms as precisely those that are equivalent to ones
constructed from atomic formulae, >, and ⊥ using ∧,∨,∃,∀, and restricted
universal quantification ∀z(Ryz → . . .) for z 6= y. By looking at the syntactic
shape of (EXT), one can see that only few of them satisfy the description above.
Still, they generate infinitely many axioms, as the next proposition shows.

Proposition 4.7 There is a subset Φ of infinitely many axioms in Ξas
U , none

of which follows in terms of |=fr
fin from all others.

Proof. Consider the sequence of frames {Fn}n∈N defined as follows.
Let Fn = 〈Wn, Rn〉 where Wn = {0, 1, ...n}, and

Rn = {(k, 0) | k ∈Wn} ∪ {(0, k) | k ∈Wn} ∪ {(k, k + 1) | k = 1, ..., n− 1}.
Now, let Φ = {χFn

| n ∈ N}.
Clearly, 0 is a central point, so each Fn is in C. Next, each χFn

is in
MLas

U . Indeed, note that BM−1(Fn) has an asymptotic measure 0 because
∀x∃y(Rxy ∧ ¬Ryy) is an instance of the extension axiom (EXT)1 that fails in
each Fn, hence in every G ∈ BM−1(Fn), because it is preserved in bounded
morphic images. Lastly, each Fn is minimal in the sense above, as it is easy to
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see that neither of them has proper bounded morphic images (different from
Fn and F0). Let Φ−n = {χFm

| 0 < m,m 6= n}. Then Φ−n 6|=fr
fin χFn

for each
n ∈ N, because Fn |= Φ−n, while Fn 6|= χFn

. 2

The translated set Φd provides likewise infinitely many independent axioms
in Ξas. The proposition above makes the following conjecture very likely, but in
order to prove it we need either a provably complete infinitary axiomatization
of MLas

U over MLr
U or a proof that MLas

U is not recursively axiomatizable.

Conjecture 4.8 The logic MLas
U is not finitely axiomatizable over MLr

U.
Respectively, MLas is not finitely axiomatizable over MLr.

It is conceivable that additional axioms from Ξas
U may be needed to add to Φ

for the axiomatization of MLas
U , and likewise for MLas. To speculate a little on

these, note first that the extension axioms η that fit van Benthem’s syntactic
description for preservation under bounded morphisms can have at most one
universally quantified variable, i.e., be of the type ∀x∃y. Furthermore, for η
to fail in some BM−1(F) such that χF ∈ Ξas

U , there must be a negative atom,
which can only be ¬Ryy. This restricts the syntactic possibilities for η to just
a few, that can be easily described. Thereafter, the frames F ∈ C for which
such η fails in BM−1(F), hence the further axioms χF ∈ Ξas

U that are generated
by them, are also easily describable. And, now the big unknown is: are these
all axioms that are missing, or are there more, that are not identifiable in such
way? If these are all, then the logic MLas

U is recursively (even if not finitely)
axiomatizable over MLr

U and even stands a chance to be decidable, too, like
MLr

U is; likewise for MLas. Otherwise, the problem with the identification of
all missing axioms is very likely going beyond logic. Indeed, the question for
which frames F ∈ C it holds that χF ∈MLas

U may then hinge on rather difficult
combinatorial-probabilistic calculations, as results in [14] and [29], as well as
an empirical study in [32], have indicated.

To sum up: it is currently unknown whether the set Ξas
U is even recursively

enumerable, though I would conjecture that it is. But even if that is the case,
the question whether MLr

U ∪Ξas
U axiomatizes MLas

U remains open. The core of
the problem is that we cannot conclude MLr

U∪Ξas
U ` φ from MLr

U∪Ξas
U |=fr

fin φ,
because we have no recursive axiomatization of |=fr

fin in MLU (and I currently
do not know if one exists). It seems a currently open question whether and
when Γ |=fr

fin φ implies derivability over a suitably recursively axiomatized base
logic, beyond the special case established in Proposition 4.4. This is currently
unknown to me even for the special case when χF |=fr

fin φ, where χF ∈ MLas
U .

Likewise for |=fr
fin in ML.

An important related question 11 is whether the logic MLas
U (resp. MLas)

is Kripke complete, i.e. whether it is the modal logic of any class of Kripke
frames. If so, it is certainly the modal logic of the class of all (not necessarily
finite) frames F such that F |= MLas

U . Equivalently, the question is whether
every non-validity of MLas

U is refuted in some (finite, or not) frame F such that

11Raised by Evgeny Zolin [37].
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F |= MLas
U ; likewise for MLas. While this is rather plausible, it does not seem

to follow obviously from what is currently known about MLas
U (resp. MLas),

so I would add it to the list of currently open problems.
Finally, briefly on the question of proving the completeness of the axiom-

atization of MLas
U and the respective translation for MLas, if and when it is

identified. It is very easy to see that they would be equally complete. This prob-
lem seems not less challenging, because – unlike the axioms from the scheme
MODEXT – the truly second-order axioms, like those from Ξas

U , are likely not to
be canonical, as the kernel partitions generated in the canonical model by the
axioms χF ∈ Ξas

U need not be syntactically definable there. Still, how difficult
that problem is can only be assessed when all axioms are explicitly known.

On this note, I leave the question of establishing a provably complete ax-
iomatization of MLas, while better understood now, still open.

5 Concluding remarks and further challenges

Besides the open questions regarding the axiomatization of MLas, stated above,
many other related problems arise. To mention just one such generic question:
given a classK of Kripke frames, what is the modal logic of almost sure validities
of K? The case when the modal logic of K satisfies the 0-1 law seems to be
considerably easier (though, by no means trivial) than the case of K = Ffin

studied here, as it then boils down to axiomatizing the modal logic of the
respective analogue of countable random frame, relativised to the class K, if it
exists. Quite promising recent results of that type were announced in [36] for
the provability logic and two versions of Grzegorczyk logic.

Further open problems arise when going beyond modal logic, to the full
MΣ1

1 and MΠ1
1 on graphs, digraphs, and other important classes of structures.

Axiomatizing the almost sure theories of these may very likely lead to quite
complicated combinatorial-probabilistic computations proving almost sure ex-
istence (resp., non-existence) of kernel partitions. In general, little is known
about these so far and the challenge to understand them is wide open.

Acknowledgments

This work was partly supported by research grant 2015-04388 of the Swedish
Research Council. I am grateful to the anonymous referees for several correc-
tions and useful comments, and am particularly indebted to Evgeny Zolin, for
scrutinising previous versions of the paper and providing numerous corrections,
as well as for many valuable comments and references that helped improving
the content and simplifying some arguments.

References

[1] Ahlman, O., Homogenizable structures and model completeness, Arch. Math. Log. 55
(2016), pp. 977–995.

[2] Ahlman, O., Simple structures axiomatized by almost sure theories, Ann. Pure Appl.
Logic 167 (2016), pp. 435–456.



Goranko 267

[3] Bezhanishvili, G. and N. Bezhanishvili, An algebraic approach to canonical formulas:
Modal case, Studia Logica 99 (2011), pp. 93–125.

[4] Bezhanishvili, N., Frame based formulas for intermediate logics, Studia Logica 90 (2008),
pp. 139–159.

[5] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge UP, 2001.
[6] Blass, A., Y. Gurevich and D. Kozen, A zero-one law for logic with a fixed-point operator,

Information and Control 67 (1985), pp. 70–90.
[7] Carnap, R., “Logical Foundations of Probability,” Univ. of Chicago Press, Chicago, 1950.
[8] Chagrov, A. and M. Zakharyaschev, “Modal Logic,” OUP, Oxford, 1997.
[9] de la Vega, W. F., Kernels in random graphs, Discrete Math. 82 (1990), pp. 213–217.

[10] Fagin, R., Probabilities on finite models, Journal of Symbolic Logic 41 (1976), pp. 50–58.
[11] Fine, K., Logics containing K4. part I, J. Symb. Log. 39 (1974), pp. 31–42.
[12] Gaifman, H., Concerning measures in first-order calculi, Israel J. of Math. 2 (1964),

pp. 1–18.
[13] Glebskii, Y., D. Kogan, M. Liogonki and V. Talanov, Range and degree of realizability

of formulas in the restricted predicate calculus, Cybernetics 5 (1969), pp. 142–154.
[14] Goranko, V. and B. Kapron, The modal logic of the countable random frame, Archive

for Mathematical Logic 42 (2003), pp. 221–243.
[15] Goranko, V. and M. Otto, Model theory of modal logic, in: P. Blackburn, J. van

Benthem and F. Wolter, editors, Handbook of Modal Logic, Studies in Logic and Practical
Reasoning 3, Elsevier, 2006 pp. 249–329.

[16] Goranko, V. and S. Passy, Using the universal modality: Gains and questions, Journal
of Logic and Computation 2 (1992), pp. 5–30.

[17] Grandjean, E., Complexity of the first–order theory of almost all structures, Information
and Computation 52 (1983), pp. 180–204.

[18] Gurevich, Y., Zero-one laws: The logic in computer science column, Bulletin of the
European Association for Theoretical Computer Science 46 (1992), pp. 90–106.

[19] Halpern, J. and B. Kapron, Zero-one laws for modal logic, Annals of Pure and Applied
Logic 69 (1994), pp. 157–193.

[20] Halpern, J. Y. and B. M. Kapron, Erratum to ”zero-one laws for modal logic” [ann.
pure appl. logic 69 (1994) 157-193], Ann. Pure Appl. Logic 121 (2003), pp. 281–283.

[21] Jankov, V., On the relation between deducibility in intuitionistic propositional calculus
and finite implicative structures, Dokl. Akad. Nauk SSSR 151 (1963), pp. 1293–1294.

[22] Kolaitis, P. G. and M. Y. Vardi, 0-1 laws and decision problems for fragments of second-
order logic, Inf. Comput. 87 (1990), pp. 301–337.

[23] Kolaitis, P. G. and M. Y. Vardi, Infinitary logics and 0-1 laws, Inf. Comput. 98 (1992),
pp. 258–294.

[24] Kolaitis, P. G. and M. Y. Vardi, 0-1 laws for fragments of existential second-order logic:
A survey, in: Proc. of MFCS 2000, 2000, pp. 84–98.

[25] Koponen, V., Asymptotic probabilities of extension properties and random l-colourable
structures, Ann. Pure Appl. Logic 163 (2012), pp. 391–438.

[26] Kracht, M., “Tools and Techniques in Modal Logic,” Elsevier, 1999.
[27] Le Bars, J., Counterexamples of the 0-1 law for fragments of existential second-order

logic: an overview, Bulletin of Symbolic Logic 6 (2000), pp. 67–82.
[28] Le Bars, J., The 0-1 law fails for monadic existential second-order logic on undirected

graphs, Inf. Process. Lett. 77 (2001), pp. 43–48.
[29] Le Bars, J., Zero-one law fails for frame satisfiability in propositional modal logic, in:

Proceedings of LICS’2002 (2002), pp. 225–234.
[30] Lynch, J. F., Probabilities of first-order sentences about unary functions, Trans.

American Mathematical Society 287 (1985), pp. 543–568.
[31] Rautenberg, W., Splitting lattices of logics, Archive for Mathematical Logic 20 (1980),

pp. 155–159.
[32] Schamm, R., “Zero-one laws and almost sure validities on finite structures,” Master’s

thesis, Rand Afrikaans University (2002).
[33] Skvortsov, D. P., Remark on a finite axiomatization of finite intermediate propositional

logics, J. Appl. Non Class. Logics 9 (1999), pp. 381–386.



268 The modal logicof almost sure frame validities in the finite

[34] Thomason, S., Reduction of second-order logic to modal logic, Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 21 (1975), pp. 107–114.

[35] van Benthem, J. F. A. K., “Modal Logic and Classical Logic,” Bibliopolis, 1983.
[36] Verbrugge, R., Zero-one laws with respect to models of provability logic and two

Grzegorczyk logics, in: Proc. of Accepted Short Papers of AiML 2018, pp. 115–119.
[37] Zolin, E., Personal correspondence (2020).

Appendix

Example. This example illustrates the details of the derivation sketched in
the proof of Lemma 2.4. Consider the frames K2 and K3 defined in Section 3.

For convenience, I will rename the points in K3:
K2 = 〈{x, y}, {(x, x), (x, y), (y, x)}〉 and
K3 = 〈{u, v1, v2}, {(u, u), (u, v1), (u, v2), (v1, u)(v2, u)}〉.
The (slightly simplified) characteristic formulae of these are as follows:

χK2
(px, py) := ¬[U]

(
〈U〉px ∧ 〈U〉py ∧ (px ∨ py) ∧ (px → ¬py)∧

(px → ♦px) ∧ (px → ♦py) ∧ (py → ♦px) ∧ (py → �¬py)
)
.

χK3
(qu, qv1 , qv2) := ¬[U]

(
〈U〉qu ∧ 〈U〉qv1 ∧ 〈U〉qv2 ∧ (qu ∨ qv1 ∨ qv2)∧

(qu → ¬qv1) ∧ (qu → ¬qv2) ∧ (qv1 → ¬qv2)∧
(qu → ♦qu)∧(qu → ♦qv1)∧(qu → ♦qv2)∧(qv1 → ♦qu)∧(qv2 → ♦qu)∧
(qv1 → �¬qv1) ∧ (qv1 → �¬qv2) ∧ (qv2 → �¬qv1) ∧ (qv2 → �¬qv2)

)
.

It is easy to check that the mapping h : K3 → K2 defined by h(u) =
x, h(v1) = h(v2) = y is a bounded morphism.

The substitution σh defined in the proof of Lemma 2.4 acts as follows:

σh(px) := qu, σh(py) := (qv1 ∨ qv2).

Respectively,
ξK3→K2(qu, qv1 , qv2) = σh(χK2(px, py)) =

¬[U]
(
〈U〉qu ∧ 〈U〉(qv1 ∨ qv2) ∧ (qu ∨ (qv1 ∨ qv2)) ∧ (qu → ¬(qv1 ∨ qv2)) ∧

(qu → ♦qu)∧(qu → ♦(qv1∨qv2))∧((qv1∨qv2)→ ♦qu)∧((qv1∨qv2)→ �¬(qv1∨qv2))
)
.

After simple equivalent transformations in KU, it is transformed to

ξ′K3→K2
(qu, qv1 , qv2) =

¬[U]
(
〈U〉qu ∧ (〈U〉qv1 ∨ 〈U〉qv2)∧ (qu ∨ qv1 ∨ qv2

)∧ (qu → ¬qv1)∧ (qu → ¬qv2) ∧
(qu → ♦qu) ∧ (qu → (♦qv1 ∨ ♦qv2)) ∧ (qv1 → ♦qu) ∧ (qv2 → ♦qu) ∧
(qv1 → �¬qv1) ∧ (qv1 → �¬qv2) ∧ (qv2 → �¬qv1

) ∧ (qv2 → �¬qv2)
)
.

By a direct inspection, one can see that every conjunct inside the scope of
¬[U] in ξ′K3→K2

(qu, qv1 , qv2) is either identical, or follows propositionally from a
conjunct inside the scope of ¬[U] in χK3(qu, qv1 , qv2).

Therefore, |= ¬χK3
(qu, qv1 , qv2)→ ¬ξ′K3→K2

(qu, qv1 , qv2),
hence |= ξ′K3→K2

(qu, qv1
, qv2)→ χK3

(qu, qv1 , qv2).
Equivalently, |= σh(χK2

(px, py))→ χK3
(qu, qv1

, qv2).
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