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A cyclic proof is a, possibly infinite but, regular derivation tree in which
every infinite path satisfies a certain soundness criterion, the form of which
depends on the logic under study. Circular and, more generally, non-well-
founded derivations are not traditionally regarded as formal proofs but merely
as an intermediate machinery in proof-theoretic investigations. They are, how-
ever, an important alternative to finitary proofs and in the last decade have
helped break some important barriers in the proof theory of logics formalising
inductive and co-inductive concepts. Most prominently cyclic proofs have been
investigated for: first-order logic with inductive definitions [6,8,4], arithmetic
[18,5,9], linear logic [3,10], modal and dynamic logics [19,13,17,20,14,2,12,1],
program semantics [16,11] and automated theorem proving [7,15,21].

We focus on cyclic proofs for modal logics, ranging from Gödel-Löb logic
to more expressive languages such as the modal µ-calculus, and reflect on how
they can contribute to the development of the theory of fixed point modal logic.
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