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Abstract

The operation of sum of a family (Fi | i in I) of Kripke frames indexed by elements of
another frame I provides a natural way to construct expressive polymodal logics with
good semantic and algorithmic properties. This operation has had several important
applications over the last decade: it was used by L. Beklemishev in the context of
polymodal provability logic; two ways of combining modal logics, the refinement of
modal logics introduced by S. Babenyshev and V. Rybakov, and the lexicographic
product of modal logics proposed by Ph. Balbiani, can be defined in terms of sums of
frames. This paper provides some general truth-preserving tools for operating with
sums of Kripke frames, and then applies them to study properties of resulting modal
logics, in particular, to investigate the finite model property.

Keywords: combinations of modal logics, sum of Kripke frames, finite model
property, universal modality, polymodal provability logic, refinement of modal
logics, lexicographic product of modal logics

1 Introduction

This paper contributes to the area of combining modal logics [9,12].
Given a family (Fi | i in I) of frames indexed by elements of another frame

I (of the same signature), the sum of the frames Fi’s over I is obtained from
their disjoint union by connecting elements of i-th and j-th distinct components
according to the relations in I (this operation is a particular case of generalized
sum of models introduced by S. Shelah in [15]). Given a class F of frames-
summands and a class I of frames-indices, we consider the logic of the class∑
I F of all possible sums of Fi’s in F over I in I. In a particular case when

F is the class FrL1 of all the frames of a logic L1, and I is FrL2 for another
logic L2, we obtain a natural operation on Kripke-complete logics.

Over the last decade, sums of Kripke frames have had several important
applications in modal logic. In [6], L. Beklemishev used (iterated) sums over
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Noetherian orders to construct models of the polymodal provability logic (this
was probably the first application of sums in the context of polymodal logics).
Then in [14] it was noted that sums can be a useful tool for studying compu-
tational complexity of modal satisfiability problems. At the same time in [1],
S. Babenyshev and V. Rybakov considered an operation on frames and logics
called refinement, and showed that under a very general condition this opera-
tion preserves the finite model property and decidability; refinements of frames
can be considered as special instances of sums. The lexicographic product of
modal logics, introduced by Ph. Balbiani in [2] (and then considered in [3,5,4]),
is another example of an operation that can be defined via sums of frames.

This paper presents several general tools for studying modal logics of sums.
Section 3 provides some basic observations on how sums interact with oper-
ations of p-morphism, generated subframe, and disjoint union. In Section 4
we address the following question: given a class of sums

∑
I F , when can we

replace F with some other class of frames F ′, preserving the logic of sums? In
particular, if the logic of summands F has the finite model property, can we
replace F with a class of finite frames? Theorem 4.11 provides the following
answer: if F and F ′ have the same logic in the language enriched by the uni-
versal modality (such classes are said to be interchangeable), then the logics of
sums

∑
I F and

∑
I F ′ are equal; moreover, these classes of sums are inter-

changeable again, thus we have Log
∑
J (
∑
I F) = Log

∑
J (
∑
I F ′) for any

other class of frames-indices J , and so on. Then we apply this theorem and
show that the finite model property of the logic LogF of summands transfers
to logics of (iterated) sums over Noetherian orders. Finally, we consider several
applications to refinements and lexicographic products.

2 Preliminaries

We assume the reader is familiar with the basic notions of modal logics [7,8,9].
Let A be a set (an alphabet of indices for modalities).
The set MLA of modal formulas over A (or A-formulas, for short) is built

from a countable set of variables PV = {p0, p1, . . .} using Boolean connec-
tives ⊥,→ and unary connectives ♦a, a ∈ A (modalities). The connectives
∨,∧,¬,>,2a are defined as abbreviations in the standard way, in particular
2aϕ is ¬♦a¬ϕ.

An (A-)frame is a structure F = (W, (Ra)a∈A), where W 6= ∅ and
Ra ⊆W×W for a ∈ A. A model on F is a pair M = (F, θ), where θ : PV→ 2W .
We write dom(F) for W , which is called the domain of F. For u, v in F, u is
a-accessible from b in F if uRav. We write u ∈ F for u ∈ dom(F). Likewise for
models. For u ∈W , V ⊆W , we put Ra(u) = {v | uRav}, Ra[V ] = ∪v∈VRa(v).

The truth relation M, w |= ϕ is defined in the usual way, in particular
M, w |= ♦aϕ means that M, v |= ϕ for some v in Ra(w). A formula ϕ is satis-
fiable in a model M if M, w |= ϕ for some w in M. For a class F of frames, let
ModF be the class of all models (F, θ) with F ∈ F . A formula is satisfiable in
a frame F (in a class F of frames) if it is satisfiable in some model on F (in
some model in ModF). ϕ is valid in a frame F (in a class F of frames) if ¬ϕ is
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not satisfiable in F (in F). Validity of a set of formulas means validity of every
formula in this set.

A (propositional normal modal) logic is a set L of formulas that contains
all classical tautologies, the axioms ¬♦a⊥ and ♦a(p0 ∨ p1) → ♦ap0 ∨ ♦ap1 for
each a in A, and is closed under the rules of modus ponens, substitution and
monotonicity (if ϕ → ψ ∈ L, then ♦aϕ → ♦aψ ∈ L, for each a in A). In
particular, the set LogF of all formulas valid in F is a logic; it is called the
logic of F ; such logics are called Kripke complete. A logic has the finite model
property if it is the logic of a class of finite frames (a frame is finite, if its
domain is). Let FrL and Frf L be the classes of all frames and all finite frames
validating L respectively.

The notions of p-morphism, generated subframe or submodel are defined in
the standard way, see e.g. [9, Section 1.4]. We write F� G, if G is a p-morphic
image of F. The notation F ∼= G means that F and G are isomorphic. We write
F[w] for the subframe of F generated by the singleton {w}; such frames are
called cones in F.

The cardinality of a set V is denoted by |V |. Natural numbers are considered
as finite ordinals. Given a sequence v = (v0, v1, . . .), we write v(i) for vi.

3 Sums

We fix N ≤ ω for the alphabet and consider the language MLN .
Consider a non-empty family (Fi)i∈I ofN -frames Fi = (Wi, (Ri,a)a∈N ). The

disjoint union of these frames is the N -frame
⊔
i∈I Fi = (

⊔
i∈IWi, (Ra)a∈N ),

where
⊔
i∈IWi =

⋃
i∈I({i} ×Wi) is the disjoint union of sets Wi, and

(i, w)Ra(j, v) iff i = j&wRi,av.

Suppose that I is the domain of another N -frame I = (I, (Sa)a∈N ).

Definition 3.1 The sum of the family (Fi)i∈I of N -frames over the N -frame
I is the N -frame

∑
i∈I Fi = (

⊔
i∈IWi, (R

Σ
a )a∈N ), where

(i, w)RΣ
a (j, v) iff i = j&wRi,av or i 6= j& iSaj.

The sum of models
∑
i∈I (Fi, θi) is the model (

∑
i∈I Fi, θ), where (i, w) ∈ θ(p)

iff w ∈ θi(p).
For classes I, F of N -frames, let

∑
I F be the class of all sums

∑
i∈I Fi such

that I ∈ I and Fi ∈ F for every i in I.

Remark 3.2 We do not require that Sa’s are partial orders or even transitive
relations.

The relations RΣ
a are independent of reflexivity of the relations Sa: if I′ =

(I, (S′a)a∈N ), where S′a is the reflexive closure of Sa for each a ∈ N , then∑
i∈I Fi =

∑
i∈I′ Fi.

We shall be mainly interested in the polymodal case. For a simple illustra-
tion of the definition let us first consider the following unimodal examples.
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Let F = (W,R) be a preorder. The (irreflexive) skeleton of F is the strict
partial order skF = (W,<R), where W is the quotient set of W by the equiva-
lence R∩R−1, and for C,D ∈W , C <R D iff C 6= D and ∃w ∈ C ∃v ∈ D wRv.
Elements of W are called clusters in F. Then F is isomorphic to the sum∑
C∈skF (C,C × C) of its clusters over its skeleton.
For another example suppose that F = (W,R) satisfies the property of weak

transitivity xRzRy ⇒ xRy ∨ x = y. Then F is isomorphic to a sum
∑
i∈I Fi,

where I is a partial order and in every Fi we have xRiy ∨ x = y.

The propositions below show how sums interact with p-morphisms, gener-
ated subframes, and disjoint unions.

The following fact is immediate from Definition 3.1.

Proposition 3.3 If J is a generated subframe of I, then
∑
i∈J Fi is a generated

subframe of
∑
i∈I Fi.

Proposition 3.4 Consider N -frames I, J, and two families of N -frames
(Fi)i∈I, (Gj)j∈J. Assume that all the relations in J are irreflexive.

(i) If f : I� J and Fi � Gf(i) for all i in I, then
∑
i∈I Fi �

∑
j∈J Gj .

(ii) If I = J and Fi � Gi for all i in I, then
∑
i∈I Fi �

∑
i∈I Gi.

(iii) If f : I� J, then
∑
i∈I Gf(i) �

∑
j∈J Gj .

Proof. (i) The required p-morphism is defined as g(i, w) = (f(i), gi(w)), where
gi : Fi � Gf(i) for each i in I. (ii) and (iii) are special cases of (i): in (ii), f is
the identity map on I; in (iii), Fi = Gf(i) for each i in I. 2

Lemma 3.5 Consider an N -frame I, a family (Ji)i∈I of N -frames, and a family
(Fij)i∈I,j∈Ji of N -frames. Then∑

i∈I

∑
j∈Ji

Fij ∼=
∑

(i,j)∈
∑

k∈I Jk

Fij .

The proof of this lemma is straightforward from the definition; the detailed
verification is given in Appendix.

Let (∅)N denote the sequence of length N in which every element is the
empty set. Disjoint unions are special cases of sums: if I is a frame with empty
relations (I, (∅)N ), then

⊔
i∈IFi =

∑
i∈I Fi.

Proposition 3.6 For a non-empty set I, a family (Ji)i∈I of N -frames, and a
family (Fij)i∈I,j∈Ji of N -frames,⊔

i∈I

∑
j∈Ji

Fij ∼=
∑

(i,j)∈
⊔

k∈IJk

Fij .

Proof. This is a special case of Lemma 3.5 in which I = (I, (∅)N ). 2

Proposition 3.7 For an N -frame I, a family (Ji)i∈I of non-empty sets, and a
family (Fij)i∈I,j∈Ji of N -frames,∑

i∈I

⊔
j∈Ji

Fij ∼=
∑

(i,j)∈
∑

k∈I (Jk,(∅)N )

Fij .



Shapirovsky 545

Proof. Follows from Lemma 3.5: let Ji be (Ji, (∅)N ). 2

4 Replacing summands

In this section we introduce the notion of interchangeable classes of frames
and prove the following: if F and G are interchangeable, then they have the
same logic, and, for any class I of frames of the same signature, the classes∑
I F and

∑
I G are interchangeable again. Then we show that classes are

interchangeable iff they have the same logic in the language enriched by the
universal modality.

4.1 Interchangeable classes

Definition 4.1 A sequence Γ = (Γa)a∈N , where Γa are sets of N -formulas, is
called a condition (in the language MLN ).

Consider a model M = (W, (Ra)a∈N , θ), w in M. By induction on the length
of an N -formula ϕ, we define the relation M, w |=Γ ϕ (“under the condition Γ,
ϕ is true at w in M”): as usual, M, w 6|=Γ ⊥, M, w |=Γ p iff M, w |= p for a
variable p, M, w |=Γ ϕ→ ψ iff M, w 6|=Γ ϕ or M, w |=Γ ψ; for a ∈ N ,

M, w |=Γ ♦aϕ iff ϕ ∈ Γa or ∃v ∈ Ra(w) M, v |=Γ ϕ.

In particular, if all Γa are empty, then we have the standard notion of truth in
a Kripke model:

M, w |=(∅)N ϕ iff M, w |= ϕ.

Let sub(ϕ) be the set of all subformulas of ϕ, and let sub(ϕ;M,Γ) be the
set {ψ ∈ sub(ϕ) | M, v |=Γ ψ for some v}. In particular, sub(ϕ;M, (∅)N ) is the
set of all subformulas of ϕ satisfiable in M. Models M and M′ are said to be
(ϕ,Γ)-equivalent if sub(ϕ;M,Γ) = sub(ϕ;M′,Γ).

A triple (ϕ,Φ,Γ), where Φ ⊆ sub(ϕ), is called a tie. A tie (ϕ,Φ,Γ) is
satisfiable in a frame F (in a class F of frames) if there exists a model M on F
(in ModF) such that Φ = sub(ϕ;M,Γ).

We put F 4ϕ G if every tie of form (ϕ,Φ,Γ), which is satisfiable in F ,
is satisfiable in G. (Equivalently, F 4ϕ G if for every condition Γ and every
model M ∈ ModF , there exists a model M′ ∈ ModG such that M and M′ are
(ϕ,Γ)-equivalent.)

If F 4ϕ G and G 4ϕ F , then we put F ≡ϕ G. We put F 4 G if F 4ϕ G
for all N -formulas ϕ. The classes F and G are interchangeable, denoted F ≡ G,
if F 4 G and G 4 F .

Proposition 4.2

(i) If F 4ϕ G and ϕ is satisfiable in F , then ϕ is satisfiable in G.

(ii) If F ≡ G, then LogF = Log G.

Proof. Follows from the following observation: if C is a class of N -frames, then
ϕ is satisfiable in C iff there exists Φ ⊆ sub(ϕ) such that ϕ ∈ Φ and the tie
(ϕ,Φ, (∅)N ) is satisfiable in C. 2
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Theorem 4.3 Let I, F , G be classes of N -frames.

(i) For every N -formula ϕ, if F 4ϕ G, then
∑
I F 4ϕ

∑
I G.

(ii) If F ≡ G, then
∑
I F ≡

∑
I G.

The proof is based on Lemmas 4.5 and 4.6 below. In what follows, Γ is a
condition, ϕ is a formula, M = (W, (Ra)a∈N , θ) is a model.

Definition 4.4 Let V be a set of elements of M. Given ϕ and Γ, let ∆ be the
condition defined as follows: for a ∈ N ,

∆(a) = Γ(a) ∪ {χ ∈ sub(ϕ) | ∃w ∈ Ra[V ]\V M, w |=Γ χ}.

∆ is called the external condition of V in M with respect to ϕ and Γ.

We write M�V for the restriction of M to V , i.e., M�V = (V, (Ra�V )a∈N , θ
′),

where Ra�V = Ra ∩ (V × V ), and θ′(p) = θ(p) ∩ V for p ∈ PV.

Lemma 4.5 Consider a sum of models M =
∑

I Mi, i in I, and the set V =
{i} × dom(Mi). If ∆ is the external condition of V in M with respect to some
given ϕ, Γ, then for all v in Mi, χ in sub(ϕ),

M, (i, v) |=Γ χ iff Mi, v |=∆ χ. (1)

Proof. By induction on the length of χ. Consider the case χ = ♦aψ.
Suppose that ψ ∈ Γ(a). Then ψ ∈∆(a), and both sides of (1) are true.
Suppose now that ψ /∈ Γ(a).
Assume that M, (i, v) |=Γ ♦aψ. Then we have M, (i, u) |=Γ ψ for some

pair (j, u) such that (i, v)Ra(j, u). If i = j, then by induction hypothesis,
Mi, u |=∆ ψ; since u is a-accessible from v in Mi, we have Mi, v |=∆ ♦aψ. If
i 6= j, then ψ ∈∆(a), and we have Mi, v |=∆ ♦aψ again.

Conversely, let Mi, v |=∆ ♦aψ. There are two cases. First, suppose
Mi, u |=∆ ψ for some u, which is a-accessible from v in Mi. Then M, (i, u) |=Γ ψ
by induction hypothesis, and so M, (i, v) |=Γ ♦aψ. Second, suppose ψ ∈ ∆(a).
Then since ψ 6∈ Γ(a), it follows that Γ(a) 6= ∆(a). By the definition of ∆,
we have M, (j, u) |=Γ ψ for some pair (j, u) in Ra[V ]\V . It follows that j is
a-accessible from i in I, so (i, v)Ra(j, u). Hence M, v |=Γ ♦aψ. 2

Lemma 4.6 Consider ϕ,Γ, a frame I, and two sums of models M =
∑

I Mi,
M′ =

∑
I M
′
i. For i in I, let ∆i be the external condition of the set {i}×dom(Mi)

in M with respect to ϕ and Γ. If the models Mi and M′i are (ϕ,∆i)-equivalent
for each i in I, then the sums M and M′ are (ϕ,Γ)-equivalent.

Proof. We show that for all i in I, w in M′i, and χ in sub(ϕ),

M′, (i, w) |=Γ χ iff M′i, w |=∆i χ. (2)

By induction on the length of χ. The only non-trivial case is χ = ♦aψ.
If ψ ∈ Γ(a), then ψ ∈∆i(a), and both sides of (2) are true.
Suppose that ψ /∈ Γ(a).
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Let M′, (i, w) |=Γ ♦aψ. Then M′, (k, u) |=Γ ψ for some pair (k, u) which is
a-accessible from (i, w) in M′. By induction hypothesis, M′k, u |=∆k

ψ. There
are two cases: k = i and k ∈ Sa(i)\{i}, where Sa is the a-th relation in I.
If k = i, then u is a-accessible from w in M′i, and the right-hand side of (2)
follows by Definition 4.1. Now let k ∈ Sa(i)\{i}. We have ψ ∈ sub(ϕ;M′k,∆k),
and since M′k and Mk are (ϕ,∆k)-equivalent, we have ψ ∈ sub(ϕ;Mk,∆k). It
follows that Mk, u

′ |=∆k
ψ for some u′ in Mk. By Lemma 4.5, M, (k, u′) |=Γ ψ.

Hence ψ ∈∆i(a), and we have M′i, w |=∆i
♦aψ, as required.

Conversely, let M′i, w |=∆i
♦aψ. If M′i, u |=∆i

ψ for some u, which is a-
accessible from w in M′, then the left-hand side of (2) follows from induction
hypothesis. Suppose ψ ∈ ∆i(a). Since ψ /∈ Γ(a), by the definition of ∆i

we have M, (k, u) |=Γ ψ for some k ∈ Sa(i)\{i}, u ∈ dom(Mk). By Lemma 4.5,
Mk, u |=∆k

ψ. The models Mk and M′k are (ϕ,∆k)-equivalent, so M′k, u
′ |=∆k

ψ
for some u′ in M′k. By induction hypothesis, M′, (k, u′) |=Γ ψ. Then since
k ∈ Sa(i)\{i}, it follows that M′, (i, w) |=Γ ♦aψ.

Thus, (2) is proved. It remains only to observe that

sub(ϕ;M,Γ) =
⋃
i∈I

sub(ϕ;Mi,∆i) =
⋃
i∈I

sub(ϕ;M′i,∆i) = sub(ϕ;M′,Γ).

Indeed, the first equality holds by Lemma 4.5, the third — by (2), and the
second one holds because Mi and M′i are (ϕ,∆i)-equivalent for all i in I. 2

Proof of Theorem 4.3. The first statement follows from Lemma 4.6: for
I ∈ I, a sum

∑
I Mi of models in ModF , and a tie (ϕ,Φ,Γ), we choose models

M′i in ModG in such a way that
∑

I M
′
i is (ϕ,Γ)-equivalent to the initial sum.

The second statement immediately follows from the first. 2

It follows that F ≡ G implies Log
∑
I F = Log

∑
I G. When F ≡ G?

4.2 Criterion of interchangeability

We shall show that classes of frames are interchangeable iff they have the same
logic in the language endowed with the universal modality.

Given a condition Γ, by induction on the length of ϕ we define [ϕ]Γ:
[⊥]Γ = ⊥, [p]Γ = p for variables, [ϕ1 → ϕ2]Γ = [ϕ1]Γ → [ϕ2]Γ,

[♦aϕ]Γ =

{
>, if ϕ ∈ Γ(a),
♦a[ϕ]Γ otherwise.

Lemma 4.7 M, w |=Γ ϕ iff M, w |= [ϕ]Γ.

Proof. By induction on the length of ϕ. Consider the case ϕ = ♦aψ.
Suppose that ψ ∈ Γ(a). In this case, we have [♦aψ]Γ = >; by Definition

4.1, M, w |= [♦aψ]Γ for all w in M.
Now suppose that ψ /∈ Γ. In this case M, w |=Γ ♦aψ means that M, v |=Γ ψ

for some v ∈ Ra(w), which is equivalent to M, w |= ♦a[ψ]Γ by induction hy-
pothesis. It remains to observe that in this case ♦a[ψ]Γ = [♦aψ]Γ. 2

We fix some u 6∈ N and consider the alphabetN ′ = N∪{u}. For anN -frame
G = (W, (Ra)a∈N ), let Gu be the N ′-frame (W, (Ra)a∈N ′), where Ru = W ×W ;
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likewise for models. For a class F of N -frames, Fu = {Fu | F ∈ F}. For a tie
(ϕ,Ψ,Γ), where ϕ is an N -formula, put

δ(ϕ,Ψ,Γ) =
∧
ψ∈Ψ

♦u[ψ]Γ ∧
∧

ψ∈sub(ϕ)\Ψ

¬♦u[ψ]Γ (3)

Lemma 4.8 (ϕ,Ψ,Γ) is satisfiable in F iff δ(ϕ,Ψ,Γ) is satisfiable in Fu.

Proof. By Lemma 4.7, for any model M we have: Ψ = sub(ϕ;M,Γ) iff the
formula δ(ϕ,Ψ,Γ) is true (at any point) in the model Mu. 2

Lemma 4.9 If F 4 G and α is satisfiable in Fu, then α is satisfiable in Gu.

Proof. Let C be the class of all N -frames. By [10, Theorem 3.7], there exists
an N ′-formula α′ = 2uχ ∧ ψ ∧

∧
i<l ♦uψi such that χ, ψ, ψi (i < l) are N -

formulas, and α ↔ α′ is valid in Cu. Assume that α is satisfiable in Mu for
some M ∈ ModF . Consider an N -formula ϕ containing ¬χ, ψ, and all ψi
as subformulas. Put Ψ = sub(ϕ;M, (∅)N ). Then ψ,ψi (i < l) are in Ψ, and
¬χ /∈ Ψ. Since F 4 G, for some M′ ∈ ModG we have Ψ = sub(ϕ;M′, (∅)N ).
It follows that α′ is true at some point in M′u. Thus α is satisfiable in Gu. 2

From Lemmas 4.8 and 4.9 we obtain the following simple characterization
of interchangeable classes.

Proposition 4.10 F ≡ G iff LogFu = Log Gu.

Now from Theorem 4.3 and Proposition 4.10 we obtain the main result of
this section:

Theorem 4.11 Let I, F , G be classes on N -frames. If LogFu = Log Gu,
then Log(

∑
I F)u = Log(

∑
I G)u, and in particular Log

∑
I F = Log

∑
I G.

The rest of this section provides some more tools for interchangeable classes.

Proposition 4.12 If F ≡ G, then Fu ≡ Gu.

Proof. If LogFu = Log Gu, then trivially Log ((Fu)
u
) = Log ((Gu)

u
) (another

universal relation does nothing). Now we use Proposition 4.10. 2

Proposition 4.13 For frames F,G, if F � G, then any tie that is satisfiable
in G is satisfiable in F.

Proof. This follows from Lemma 4.8, because F� G implies Fu � Gu. 2

Definition 4.14 Let M = (W, (Ra)a∈N , θ) and M′ = (W ′, (R′a)a∈N , θ) be
models such that W ′ ⊆ W , R′a ⊆ Ra for each a ∈ N , and θ′(p) = θ(p) ∩W ′
for variables. The model M′ is called a selective filtration of M with respect to
given ϕ and Γ if for all ψ, a ∈ N such that ♦aψ ∈ sub(ϕ), and all w in M′

M, w |=Γ ♦aψ&ψ /∈ Γ(a) ⇒ ∃v (wR′av&M, v |=Γ ψ).

Proposition 4.15 If M′ is a selective filtration of M with respect to ϕ and Γ,
then for all ψ ∈ sub(ϕ), w in M′, we have M′, w |=Γ ψ iff M, w |=Γ ψ.

In our formulation of selective filtration, it is important that 2a’s are ab-
breviations. The proof of Proposition 4.15 is straightforward (see Appendix).
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Proposition 4.16 If M′ is a generated submodel of M, then for every condition
Γ, every formula ϕ, and every w in M′, we have M′, w |=Γ ϕ iff M, w |=Γ ϕ.

Proof. A generated submodel is a selective filtration (with respect to any ϕ
and Γ). Now we use Proposition 4.15. 2

5 Applications

5.1 Sums over Noetherian orders

Definition 5.1 Consider a unimodal frame I = (I, S) and a family (Fi)i∈I of

N -frames (or N -models). For a ∈ N , the a-sum
a∑

I
Fi is the sum

∑
I′ Fi,

where I′ is the N -frame whose domain is I, the a-th relation is S and all the
other relations are empty. If F is a class of N -frames, I is a class of 1-frames,

then
a∑

I
F is the class of all sums

a∑
I
Fi, where I ∈ I and all Fi are in F .

For s < ω and a tuple a = (a0, . . . , as−1) ∈ Ns, let
a∑

I
F be the class

a0∑
I
. . .

as−1∑
I
F (we put

a∑
I
F = F if a is the empty sequence).

A strict partial order (I,<) is Noetherian if it has no infinite ascending
chain. Let NPO and POf be the classes of all non-empty Noetherian partial
orders and all finite non-empty strict partial orders respectively (we say that a
partial order is non-empty, if its domain is).

Sums over Noetherian orders play a significant role in the context of prov-
ability logics. In [6], L. Beklemishev introduced a system J, a Kripke complete
approximation of the well-known polymodal provability logic GLP [11]. Se-
mantically, J was characterised as the logic of frames called stratified in [6].
In our notation, this can be formulated as follows: for N < ω, the N -modal

fragment of J is the logic of the class
aN∑

NPO
{SN}, where SN is a singleton

with N empty relations, and aN = (0, . . . , N − 1). From [6] it follows that

Log
aN∑

NPO

{SN} = Log
aN∑

POf

{SN}. (4)

We are going to generalize this fact in the following ways: in (4), we may
replace {SN} with an arbitrary class F of N -frames; if, moreover, the logic of
the class Fu has the finite model property, then in the right-hand side of the
equation we may replace F with the class of finite frames of its logic.

A strict partial order (I,<) is called a (transitive irreflexive) tree if it has a
least element (the root) and for all i ∈ I the set {j | j < i} is a finite chain. Let
Trf and NTr be the classes of all finite trees and Noetherian trees respectively.

Consider a finite tree I = (I,<). The branching of i in I, denoted by
br(i, I), is the number of immediate successors of i (j is an immediate successor
of i, if i < j and there is no k such that i < k < j); the branching of I,
denoted by br(I), is max {br(i, I) | i in I}. The height of I, denoted by ht(I), is
max {|V | | V is a chain in I}. For n ∈ ω, let Tr(n) be the class of all finite trees
with height and branching ≤ n: Tr(n) = {I ∈ Trf | ht(I) ≤ n& br(I) ≤ n}.
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Let
⊔
F be the class of all disjoint unions

⊔
I Fi, where I is a non-empty

set and all Fi are in F , and
⊔
≤kF the class of all such frames where |I| ≤ k.

Let ]ϕ be the number of subformulas of ϕ.

Theorem 5.2 Let F be a class of N -frames, s < ω, a = (a0, . . . as−1) ∈ Ns,

Trf ⊆ I0, . . . , Is−1 ⊆ NPO, G =
a0∑

I0
. . .

as−1∑
Is−1

F .

(i) If s > 0, then for every ϕ we have
a∑

NPO
F ≡ϕ

⊔
≤]ϕ

a∑
Tr(]ϕ)

F .

(ii) Log G = Log
a∑

Trf
F ; moreover, a formula ϕ is satisfiable in G iff ϕ is

satisfiable in
a∑

Tr(]ϕ)
F .

(iii) If LogFu has the finite model property, then so does Log G:

Log G = Log
a∑

Trf

Frf LogF .

The proof of this theorem is based on the following statements.

Lemma 5.3 Let a ∈ N . Every frame in
a∑

NPO

⊔
F is isomorphic to a

frame in
a∑

NPO
F .

Proof. By Proposition 3.7, a sum of form
a∑

i∈I

⊔
j∈JiFij is isomorphic to

a∑
(i,j)∈

∑
k∈I (Jk,∅)

Fij . If I is Noetherian, then the sum
∑
k∈I (Jk,∅) is. 2

Proposition 5.4 Let (I,<) be a Noetherian tree, V a finite family of subsets of
I, i0 ∈ I. Then there exists J ⊆ I such that ht(J,<) ≤ |V|+ 1, br(J,<) ≤ |V|,
i0 is the root of (J,<), and for all V ∈ V, j ∈ J we have

∃i > j i ∈ V ⇒ ∃i > j i ∈ V ∩ J. (5)

The proof of this fact is by a standard ‘step-by-step’ construction, the details
are given in Appendix. We shall use it in the following lemma, which is the
crucial technical step in the proof of Theorem 5.2.

Lemma 5.5 Let a ∈ N . Consider a model M ∈ Mod
a∑

NTr
F . For every ϕ,

Γ, and x in M, there exists a model M′ ∈ Mod
a∑

Tr(]ϕ)
F which contains x

and is a selective filtration of M with respect to ϕ and Γ.

Proof. Let M =
a∑

i∈I
Mi, where I = (I,<) is a Noetherian tree. Consider

the family V = {P (α) | ♦aα ∈ sub(ϕ)}, where

P (α) = {i ∈ I | M, (i, w) |=Γ α for some w}.

Assume that x = (i0, w0). By Proposition 5.4, there exists a restriction J =
(J,<) of I such that J ∈ Tr(|V|+ 1), i0 ∈ J , and for all j ∈ J , V ∈ V we have
(5).
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Put M′ =
a∑

i∈J
Mi and show that M′ is the required selective filtration.

Let b ∈ N , ♦bα ∈ sub(ϕ), α /∈ Γ(b) and M, (j, w) |=Γ ♦bα for some j in J
and some w in Mj . Let Rb be the b-th relation in M. Since α /∈ Γ(b), we have
M, (k, u) |=Γ α for some k in I and u in Mk such that (j, w)Rb(k, u). Our aim
is to choose i in J and v in Mi such that M, (i, v) |=Γ α and (j, w)Rb(i, v).

If j = k, we can put i = k and v = u.
Assume that j 6= k. In this case a = b and k > j. Then k ∈ P (α), and by

(5) there exists i > j such that i ∈ J and i ∈ P (α). By the definition of P (α),
we have M, (i, v) |=Γ α for some v in Mi. Since i > j, we have (j, w)Ra(i, v).2

Lemma 5.6 For a ∈ N ,
a∑

NPO
F ≡ϕ

⊔
≤]ϕ

a∑
Tr(]ϕ)

F .

Proof. First, we claim that the classes
a∑

NPO
F and

⊔ a∑
NTr
F are in-

terchangeable. By standard unravelling arguments, if a non-empty Noetherian
order J has a least element, then it is a p-morhpic image of a Noetherian tree
T(J). Every frame is a p-morphic image of the disjoint union of its cones. Thus,
for a non-empty Noetherian order I we have⊔

i∈I

T(I[i])�
⊔
i∈I

I[i]� I;

so I is a p-morhpic image of a disjoint union of Noetherian trees. Now by
Propositions 3.4 and 4.13 we obtain

a∑
NPO

F 4
a∑
⊔

NTr

F .

Since
⊔

NTr ⊆ NPO, we have

a∑
⊔

NTr

F 4
a∑
NPO

F ;

it follows that these classes are interchangeable. By Proposition 3.6,

a∑
⊔

NTr

F ≡
⊔ a∑

NTr

F ,

which proves the claim.
Trivially, ⊔

≤]ϕ

a∑
Tr(]ϕ)

F 4ϕ
⊔ a∑

NTr

F .

To prove the converse, consider a model M =
⊔
i∈I Mi, where I is a set and all

Mi are in Mod
a∑

NTr
F . Let Ψ = sub(ϕ;M,Γ) for a given Γ. For each ψ in Ψ

we chose some j in I and xj in Mj such that Mj , xj |=Γ ψ. Let J be the set of
all these j’s (if Ψ is empty, let J = {j} for some arbitrary j ∈ I, and xj be an
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arbitrary element of Mj). By Lemma 5.5, for each j ∈ J there exists a model

M′j ∈ Mod
a∑

Tr(]ϕ)
F which contains xj and is a selective filtration of Mj with

respect to ϕ and Γ; it follows that M′j , xj |= ψ by Proposition 4.15. On the other
hand, for each j ∈ J , sub(ϕ;M′j ,Γ) ⊆ sub(ϕ;Mj ,Γ) by Proposition 4.15, and
sub(ϕ;Mj ,Γ) ⊆ Ψ by Proposition 4.16. It follows that Ψ =

⋃
j∈J sub(ϕ;M′j ,Γ).

By Proposition 4.16 again, we have sub(ϕ;
⊔
j∈J M

′
j ,Γ) =

⋃
j∈J sub(ϕ;M′j ,Γ).

Thus
⊔
j∈J M

′
j and M are (ϕ,Γ)-equivalent. 2

Proof of Theorem 5.2. (i) By induction on s. The case s = 1 is given by

Lemma 5.6. For s > 1, we put b = (a1, . . . , as−1), G =
b∑

NPO
F , H =

b∑
Tr(]ϕ)

F . We have

a0∑
NPO

G ≡ϕ
a0∑

NPO

⊔
≤]ϕ
H ≡

a0∑
NPO

H ≡ϕ
⊔
≤]ϕ

a0∑
Tr(]ϕ)

H;

the first equivalence holds by induction hypothesis and Theorem 4.3; the next
step is immediate from Lemma 5.3; finally, we apply Lemma 5.6 again.

(ii) Since G contains
a∑

Trf
F , we only have to check that if ϕ is satis-

fiable in G, then ϕ is satisfiable in
a∑

Tr(]ϕ)
F . The class G is contained in

a∑
NPO
F . Now (ii) follows from (i) and Proposition 4.2.

(iii) follows from (ii) and Theorem 4.11. 2

5.2 Refinements and lexicographic products

The following construction was introduced in [1] by S. Babenyshev and V.
Rybakov.

Definition 5.7 Let F = (W,R) be a preorder, skF = (W,<) its skeleton.
Consider a family (FC)C∈W of N -frames such that dom(FC) = C for all C ∈W .
The refinement of F by (FC)C∈W is the (1 +N)-frame (W,R, (R�

a )a∈N ), where

R�
a ⊆

⋃
C∈W

C × C for all a ∈ N, (6)

(W, (R�
a )a∈N )�C = FC for all C ∈W. (7)

For a class I of preorders and a class G of N -frames let Ref(I,F) be the
class of all refinements of frames from I by frames in F . For logics L1 ⊇ S4, L2,
we put Ref(L1, L2) = Log Ref(FrL1,FrL2).

Remark 5.8 In [1], refinements are defined in a more general way — for the
cases when F is a K-frame (K ≤ ω) with transitive relations.

In [1] it was shown that in many cases the refinement operation preserves
the finite model property. In particular, if both L1 and L2 admit filtration
(in the sense of Lemmon and Scott [13]), then Ref(L1, L2) is the logic of the
class Ref(Frf L1,Frf L2). Moreover, from the proof it follows that if L2 admits
filtration, then Ref(L1, L2) is the logic of Ref(FrL1,Frf L2) ([1, Lemma 3.3]).
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We consider refinements of frames as sums and provide another condition for
the latter equality.

Let us make the convention that the universal modality comes first in the
language and shifts other modalities: for an N -frame G = (W,R0, R1, . . .), G

u

is the (1 +N)-frame (W,W ×W,R0, R1, . . .).

Proposition 5.9 If F� is the refinement of a preorder F by the frames
(FC)C∈skF, then

F� ∼=
0∑
C∈skF

FuC .

Proof. The required isomorphism is defined as w 7→ (C,w), where w ∈ C. 2

For a logic L, let Lu be the logic of the class (FrL)u.

Theorem 5.10 Let L1 be a unimodal logic containing S4. For every logic L2

such that Lu2 has the finite model property, we have

Ref(L1, L2) = Log Ref(FrL1,Frf L2).

Proof. Suppose that a formula ϕ is satisfiable in Ref(FrL1,FrL2) and show
that it is satisfiable in Ref(FrL1,Frf L2). By Proposition 5.9, ϕ is satisfiable

in a model M =
0∑

C∈skF
Mu
C , where F |= L1 and for every C ∈ skF, MC is a

model on a frame validating L2. The classes (FrL2)u and (Frf L2)u have the
same logic Lu2 , since it has the finite model property. Hence by Proposition
4.10, FrL2 ≡ Frf L2. Then by Proposition 4.12, (FrL2)u ≡ (Frf L2)u. We
consider the condition Γ = (∅)N+1 and use Lemma 4.6 to construct models
M′C (C ∈ skF) such that

• the sums M and M′ =
0∑

C∈skF
M′C

u
are (ϕ,Γ)-equivalent,

• every M′C is based on a finite frame validating L2, and

• MC = M′C whenever C is finite.

Thus ϕ is satisfiable in M′. For C ∈ skF, we put C ′ = dom(M′C). The frame of
M′ is the refinement of the preorder G =

∑
C∈skF (C ′, C ′ × C ′) by the frames

of models M′C . It follows that F � G (indeed, the preorder F is isomorphic
to
∑
C∈skF (C,C × C), and for each C in skF we have |dom(M′i)| ≤ |C|). It

follows that G validates L1. Thus, the frame of M′ is in Ref(FrL1,Frf L2) as
required. 2

Another sum-based operation is the lexicographic product of logics, intro-
duced in [2] by Ph. Balbiani. Fix N,K < ω.

Definition 5.11 Consider frames I = (I, (Sa)a∈K) and F = (W, (Rb)b∈N ).
The l-product IhF is the (K +N)-frame (I ×W, (S h

a )a∈K , (R
h
b )b∈N ), where

(i, w)S h
a (j, u) iff iSaj,

(i, w)Rh
b (j, u) iff i = j & wRbu.
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For a class I of K-frames and a class G of N -frames, the class I hF is the
class of all products IhF such that I ∈ I and F ∈ F . For logics L1, L2, we put
L1hL2 = Log (FrL1h FrL2).

From the definitions we have

Proposition 5.12 IhF =
∑

I′ Fi, where I′ = (I, (Sa)a∈K , (∅)N ), and for each
i ∈ I, Fi = (W, (Si,a)a∈K , (Rb)b∈N ) with Si,a = W ×W if iSai, and Si,a = ∅
otherwise.

Let QO and QOf be the classes of all non-empty preorders and finite non-
empty preorders respectively.

Theorem 5.13 S4hS4 = Ref(S4,S4) = Log
0∑

Trf
QOf

u.

Proof. First, we show that every product IhF of preorders is in Ref(QO,QO).
Let IhF = (W,R0, R1), H = (W,R0). Notice that H is a preorder. Then IhF
is the refinement of H by the family (GC)C∈skH, where GC is the restriction of
(W,R1) to C. Each GC is a disjoint union of copies of F, thus GC is a preorder.
Hence IhF ∈ Ref(QO,QO).

By the definition, Ref(S4, S4) = Log Ref(QO,QO). It follows that

S4hS4 ⊇ Ref(S4,S4).

Suppose that ϕ is satisfiable in Ref(QO,QO). In [1], it was shown that
Ref(S4, S4) = Log Ref(QOf ,QOf ). Thus ϕ is satisfiable in Ref(QOf ,QOf ).

Hence by Proposition 5.9, ϕ is satisfiable in
0∑

POf

QOf
u. By Theorem 5.2,

ϕ is satisfiable in
0∑

Trf
QOf

u. Thus

Ref(S4,S4) ⊇ Log
0∑

Trf

QOf
u.

In [2], it was shown that S4hS4 is the least logic containing the axioms of
S4 for ♦0,♦1 and the formulas

♦0♦1p→ ♦0p, ♦1♦0p→ ♦0p, ♦0p→ 21♦0p.

They are valid in
0∑

Trf
QOf

u, thus Log
0∑

Trf
QOf

u ⊇ S4hS4. 2

As another example, we consider the logic GLhS4, where GL is the Gödel-
Löb logic. The next theorem shows that GLhS4 is approximable by finite
products and sums. Let C be the class of finite frames of form (C,∅, C ×C).

Theorem 5.14 GLhS4 = Log (Trf hQOf ) = Log
0∑

Trf

1∑
Trf
C.

Proof. For a frame F = (W,R) let F[∅] be the 2-frame (W,∅, R); for a class
F of 1-frames we put F [∅] = {F[∅] | F ∈ F}.
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Since NPO = FrGL, by the definition, GLhS4 is the logic of the class

NPOhQO. By Proposition 5.12, NPOhQO ⊆
0∑

NPO
QO[∅]. It follows

that

Log
0∑
NPO

QO[∅] ⊆ GLhS4.

Consider the class (QO[∅])
u

= {(W,W ×W,∅, R) | (W,R) ∈ QO}. It is a
standard fact the the logic of this class has the finite model property (e.g., it
follows from [10, Theorem 5.9]). By Theorem 5.2 we obtain

Log
0∑
NPO

QO[∅] = Log
0∑

Trf

QOf
[∅].

We shall now prove that

Log
0∑

Trf

QOf
[∅] = Log (Trf hQOf ).

If ϕ is satisfiable in Trf hQOf , then ϕ is satisfiable in
0∑

Trf
QOf

[∅] by

Proposition 5.12. Conversely, suppose that ϕ is satisfiable in a sum
0∑

I
F

[∅]
i ,

where I is a finite tree and Fi are finite preorders. Consider the Cartesian
product G of the preorders (Fi)i∈I . It is easy to see that G � Fi and so

G[∅] � F
[∅]
i for each i in I. Now it follows from Propositions 3.4 and 5.12 that

IhG�
0∑

I
F

[∅]
i . Since G is a finite preorder, ϕ is satisfiable in Trf hQOf .

Altogether we have proved

Log (Trf hQOf ) = Log
0∑

Trf

QOf
[∅] = Log

0∑
NPO

QO[∅] ⊆ GLhS4.

It follows that these four logics coincide: indeed, GLhS4 is contained in the
logic of the class Trf hQOf , since this class is contained in NPOhQO.

Every finite preorder is (up to isomorphism) the sum of finite frames of
form (C,C × C) over a finite partial order, and vice versa. Thus, the classes

QOf
[∅] and

1∑
POf

C coincide up to isomorphisms. It follows that GLhS4

is the logic of the class
0∑

Trf

1∑
POf

C. Finally, we have

Log
0∑

Trf

1∑
POf

C = Log
0∑

Trf

1∑
Trf

C

by Theorem 5.2. 2
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6 Further results

For classes I and F , let If = Frf Log I, and Ff = Frf LogF . When do we
have Log

∑
I F = Log

∑
If Ff? Finite summands can be obtained by Theorem

4.11. Theorem 5.2 allows us to obtain finite indices in the case of sums over
Noetherian orders. The proof of Theorem 5.2 is based on selective filtration.
Another way is to use filtration in the sense of Lemmon and Scott [13]: this
approach was successfully used in [1] to obtain the finite model property for
refinements in numerous cases. The methods developed in [1] in a combination
with Theorem 4.11 suggest the following conjecture: in the case of finitely many
modalities, if LogFu has the finite model property, and Log I admits filtration,
then the classes

∑
I F and

∑
If Ff are interchangeable.

Theorem 5.2 can be used to obtain complexity results for logics of sums
over Noetherian orders, in particular – over finite orders. Let SatF denote the
satisfiability problem for F .

Theorem 6.1 Let F be a non-empty class of N -frames, a ∈ N , G =
a∑

I
F ,

where Trf ⊆ I ⊆ NPO. If SatFu is in PSPACE, then SatGu is PSPACE-
complete.

This result generalizes [14, Theorem 35]; the proof will be given in a forthcom-
ing paper. In particular, in view of Theorems 5.13 and 5.14, it follows that the
logics S4hS4 and GLhS4 are PSPACE-complete.
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Appendix

Proof of Lemma 3.5. Let I = (I, (Sa)a∈N ). For i ∈ I, let Ji = (Ji, (Si,a)a∈N ),
and for j ∈ Ji, Fij = (Wij , (Rij,a)a∈N ). Let W be the set of all triples (i, j, w)
such that i ∈ I, j ∈ Ji, and w ∈ Wij . By the definition, the domain of∑
i∈I
∑
j∈Ji Fij is the set of all the pairs (i, (j, w)) such that (i, j, w) ∈ W .

Likewise, the domain of
∑

(i,j)∈
∑

k∈I Jk
Fij consists of all ((i, j), w) such that

(i, j, w) ∈W .
For a ∈ N , let R′a, R′′a be respectively the a-th relations in

∑
i∈I
∑
j∈Ji Fij

and
∑

(i,j)∈
∑

k∈I Jk
Fij . We claim that for all (i, j, w), (i′, j′, w′) ∈W , a ∈ N ,

(i, (j, w))R′a(i′, (j′, w′)) iff ((i, j), w)R′′a((i′, j′), w′). (A.1)

By the definition, (i, (j, w))R′a(i′, (j′, w′)) iff

i 6= i′ & iSai
′ or i = i′ & (j 6= j′ & jSi,aj

′ or j = j′ & wRij,aw
′). (A.2)
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Likewise, ((i, j), w)R′′a((i′, j′), w′) iff

(i, j) 6= (i′, j′) & (i 6= i′ & iSai
′ or i = i′ & jSi,aj

′) or

(i, j) = (i′, j′) & wRij,aw
′. (A.3)

It is straightforward that (A.2) and (A.3) are equivalent. 2

Proof of Proposition 4.15. By induction on the length of ψ. Consider the
case ψ = ♦aχ ∈ sub(ϕ).

If χ ∈ Γ(a), then, by Definition 4.1, M′, w |=Γ ♦aχ and M, w |=Γ ♦aχ.
Assume that χ /∈ Γ(a).
If M′, w |=Γ ♦aχ, then for some v ∈ R′a(w) we have M′, v |=Γ χ, which is

equivalent to M, v |=Γ χ by induction hypothesis; since R′a ⊆ Ra, we have
M, w |=Γ ♦aχ.

Conversely, assume that M, w |=Γ ♦aχ. By Definition 4.14, M, v |=Γ χ for
some v ∈ R′a(w); by induction hypothesis, M′, v |=Γ χ, and so M′, w |=Γ ♦aχ.2

Proof of Proposition 5.4. For V ⊆ I, let V ′ be all maximal elements of V ,
♦V = {j | ∃i > j i ∈ V }. Since (I,>) is well-founded, we have

♦V = ♦V ′. (A.4)

Put K = {i0} ∪
⋃
{V ′ | V ∈ V}, K = (K,<). The height of K is not greater

than |V|+ 1: indeed, if i ∈ U ′, j ∈ V ′, and i < j, then U 6= V .
Let h be the height of the cone K[i0] (the depth of i0 in K). We construct

the required J ⊆ K by induction on h.
If h = 1, then K[i0] = ({i0},∅), and we put J = K[i0]; then (5) is trivial,

the branching of J is 0.
Assume that h > 1. Consider the family

U = {U ∈ V | i0 ∈ ♦U}.

Let U ∈ U . By (A.4), we have i0 < j for some j ∈ U ′ ⊆ K; the height of K is
finite, thus for some immediate successor iU of i0 in K we have

iU ∈ U ′ ∪ ♦U ′. (A.5)

In K, the depth of iU is less than the depth of i0. By induction hypothesis, iU
is the root of a tree (J(iU ), <) whose branching is not greater than |V| and

∀V ∈ V ∀j ∈ J(iU ) (j ∈ ♦V ⇒ j ∈ ♦V ∩ J(iU )). (A.6)

We put J = {i0} ∪
⋃
{J(iU ) | U ∈ U}. The branching of i0 in (J,<) is not

greater than the cardinality of U ⊆ V, thus br(J,<) ≤ |V|. Since J ⊆ K,
ht(J,<) ≤ ht(K) ≤ |V|+ 1. By (A.5) and (A.6) we have (5). 2
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