
*-Continuity vs. Induction: Divide and
Conquer

Stepan Kuznetsov 1

Steklov Mathematical Institute of the RAS
8 Gubkina St., Moscow, Russia

Abstract

The Kleene star can be axiomatised in two ways: inductively, as a fixpoint, or as
the ω-iteration of multiplications. The latter is called *-continuity and is stronger
than the former: not every Kleene algebra is *-continuous. In the language of only
multiplication, union, and Kleene star, however, the (in)equational atomic theory
(logic) of *-continuous Kleene algebras coincides with the one of all Kleene algebras
(Kozen, 1994). The situation changes dramatically when one adds division operations.
As shown by Buszkowski (2007), then the logic with *-continuity becomes Π0

1-hard
and therefore strictly stronger than the inductive one. This result, however, is not
constructive, i.e., does not yield a formula distingushing them.
Our contribution is threefold. First, we present an example of Kleene algebra with
divisions and intersection, which is not *-continuous. Second, we present a formula
which makes Buszkowski’s result constructive (see above). Third, we show that the
calculus for *-continuity is incomplete w.r.t. more specific relational and language
models, in the fragment with divisions, multiplication, intersection, and Kleene star.
The choice of this fragment is natural, since union or the unit constant are known to
yield incompleteness even without Kleene star.

Keywords: Kleene star, infinitary action logic, action logic, residuated Kleene
lattice, *-continuity, algebra of formal languages, relational algebra

1 Introduction

1.1 Residuated Kleene Lattices

We start with the definition of residuated Kleene lattice (RKL), or action lat-
tice, following Kozen [17] and Buszkowski [5]. The notion of RKL is a combi-
nation of action algebras, or action semilattices, by Pratt [32], and residuated
lattices studied by Ono [27] and others as models for substructural logics (i.e.,
logics lacking structural rules of contraction, weakening, and permutation). In
comparison with RKL’s, action algebras lack meet (∧) and residuated lattices
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lack the most intriguing operation, the Kleene star. In RKL’s, we have the full
set of operations.

As a matter of notation, we follow the tradition of Lambek [21] and denote
residuals as divisions (\, /), rather than directed implications (→, ←). For
simplicity, we also do not use the zero constant in our algebraic definitions and
logical calculi (examples of RKL’s we present here, however, have a zero).

Definition 1.1 A structure (A;�,∨,∧, ·,1, \, /, ∗) is a residuated Kleene lat-
tice (RKL), if the following holds.

(i) (A;�,∨,∧) is a lattice (i.e., � is a preorder, x ∨ y = sup{x, y}, x ∧ y =
inf{x, y}, where sup and inf are taken w.r.t. � and should exist).

(ii) (A; ·,1) is a monoid (i.e., · is an associative operation and 1 is its unit).

(iii) \ and / are residuals for · w.r.t. �, i.e.,

y � x \ z ⇐⇒ x · y � z ⇐⇒ x � z / y

In other words, x \ z = max{y | x · y � z} and z / y = max{x | x · y �
z}, where max is taken w.r.t. �. The structure A is residuated if all
these maxima exist. (Partially ordered residuated semigroups are algebraic
models for the Lambek calculus [21].)

(iv) a∗ is the smallest fixpoint of x 7→ 1 ∨ a · x, i.e., 1 � a∗, a · a∗ � a∗, and if
1 � b and a · b � b, then a∗ � b.

As shown by Pratt [32], in the residuated situation there is no difference
between left and right RKL’s (cf. Kozen [15] for an example where a∗ is a
fixpoint for x 7→ 1 ∨ a · x, but not for x 7→ 1 ∨ x · a).

Moreover, Pratt [32] shows that in the presence of division operations the
fixpoint condition (iv) can be reformulated. Namely, the ‘smallest’ half of (iv)
is replaced by one axiom which Pratt called pure induction: (a \ a)∗ = a \ a,
and the monotonicity principle: if a � b, then a∗ � b∗. 2 Pure induction is
particularly easy to check. For the other half of (iv) Pratt suggests a symmetric
version: 1 � a∗, a � a∗, a∗ · a∗ � a∗.

Further we use the notation xn, defined inductively: x0 = 1, xn+1 = xn · x.

Definition 1.2 An RKL A is *-continuous, if x∗ = sup{xn | n ∈ ω}, where
supremum is taken w.r.t. � and ω denotes the set of all natural numbers. (In
particular, this implies that all such suprema exist.)

Notice that here the usual definition of *-continuity, y ·x∗ ·z = sup{y ·xn ·z |
n ∈ ω}, here can be simpified, since in the presence of division operations mul-
tiplication distributes over infinite joins (suprema). In presence of *-continuity,
axiom (iv) becomes redundant.

2 Since in lattices a � b iff b = a ∨ b, monotonicity can be reformulated as an (in)equation:
a∗ � (a ∨ b)∗. Pratt also does provides such a reformulation of Lambek-style axioms for
division operations. This yields a purely (in)equational axiomatisation of action algebras,
i.e., the fact that the class of action algebras is a finitely based variety [32, Theorem 7].
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1.2 Action Logic and Infinitary Action Logic

In this section we define logical calculi which correspond to algebraic structures
defined before. We start with MALC, the multiplicative-additive Lambek
calculus, 3 which is obtained from the Lambek calculus with the unit [22] by
extending it with additive conjunction and disjunction from Girard’s linear
logic [9], corresponding to meet and join.

Formulae of MALC are built from a countable set of variables {p, q, r, . . .}
and the unit constant 1 using five binary connectives: ·, \, /, ∧, ∨. Sequents
of MALC are expressions of the form Π→ A, where A is a formula and Π is
a finite (possibly empty) linearly ordered sequence of formulae.

Axioms and rules of MALC are as follows:

A→ A
(id)

Γ,∆→ C

Γ,1,∆→ C
(1→) → 1

(→ 1)

Γ, A,B,∆→ C

Γ, A ·B,∆→ C
(· →) Γ→ A ∆→ B

Γ,∆→ A ·B (→ ·)

Π→ A Γ, B,∆→ C

Γ,Π, A \B,∆→ C
(\ →)

A,Π→ B

Π→ A \B
(→ \)

Π→ A Γ, B,∆→ C

Γ, B /A,Π,∆→ C
(/→)

Π, A→ B

Π→ B /A
(→ /)

Γ, A1,∆→ C Γ, A2,∆→ C

Γ, A1 ∨A2,∆→ C
(∨ →)

Π→ Ai
Π→ A1 ∨A2

(→ ∨)i, i = 1, 2

Γ, Ai,∆→ C

Γ, A1 ∧A2,∆→ C
(∧ →)i, i = 1, 2

Π→ A1 Π→ A2

Π→ A1 ∧A2
(→ ∧)

Π→ A Γ, A,∆→ C

Γ,Π,∆→ C
(cut)

(The cut rule is eliminable by straightforward induction, as in the original
Lambek calculus [21].)

This system is extended with the Kleene star ∗ (as a unary connective) in
two ways, depending on whether we want *-continuity.

The *-continuous case corresponds to infinitary action logic [6], ACTω,
which is obtained from MALC by adding the following rules:

3 Sometimes MALC is called “full Lambek calculus,” which sounds a bit offensive for the
original, multiplicative-only system.
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(Γ, An,∆→ C)n≥0

Γ, A∗,∆→ C
(∗ →)ω

Π1 → A . . . Πn → A

Π1, . . . ,Πn → A∗
(→ ∗)n, n ≥ 0

Derivations in ACTω are infinite, but well-founded trees with infinite
branching at instances of (∗ →)ω. Cut elimination for ACTω was shown by
Palka [29] using transfinite induction.

The system corresponding to the inductive definition of ∗, action logic ACT,
is obtained from MALC (with (cut)) by adding the following rules [5]:

→ A∗ A,A∗ → A∗ A∗, A→ A∗

A,B → B

A∗, B → B

B,A→ B

B,A∗ → B

These rules are not good Gentzen-style sequent rules, and cut in this formula-
tion of ACT is not eliminable. In fact, no cut-free sequent calculus for ACT
is known. (An attempt was taken by Jipsen [12], but Buszkowski [5] showed
that in Jipsen’s system cut is not eliminable.)

Besides Kleene star, we also consider positive iteration, defined as A+ =
A ·A∗. One can prove in ACT (and therefore in ACTω), that A∗ is equivalent
to 1 ∨A+.

Positive iteration becomes important if we consider systems with Lambek’s
restriction, where antecedents of all sequents are required to be non-empty (as
in the original paper by Lambek [21]). With Lambek’s restriction, standard
Kleene star becomes unavailable, and is replaced by positive iteration. Al-
gebraically, this constraint corresponds to considering semigroups instead of
monoids. Lambek’s restriction is motivated by linguistic applications of the
Lambek calculus and yields a system which is not a conservative fragment of
the system without this restriction. Indeed, even some sequents with non-
empty antecedents, like (p \ p) \ q → q, require empty antecedents during the
derivation. Thus, the study of systems with and without Lambek’s restriction
go in parallel. For more details, we refer to [20], and in this paper continue (for
simplicity) using action logic without Lambek’s restriction imposed.

Thanks to cut elimination, ACTω’s fragments with restricted sets of con-
nectives are obtained by merely taking the appropriate subset of rules. In
particular, removing rules for Kleene star yields MALC as a conservative frag-
ment of ACTω. For ACT, due to the lack of a cut-free sequent calculus, the
question of conservative fragments is non-trivial. However, if a sequent Π→ A
does not include ∗ and is derivable in ACT, then it is derivable in ACTω, and
therefore in MALC by conservativity of ACTω over MALC. Thus, MALC
is a conservative fragment of both ACT and ACTω.

1.3 Complexity and Compactness Arguments

Kozen’s completeness theorem [16] shows that for Kleene algebras, i.e., in the
language of ·, ∨, and ∗, though non-*-continuous Kleene algebras do exist [15],
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the logics for *-continuous Kleene algebras and all Kleene algebras coincide.
Division operations change things dramatically. Namely, Buszkowski [5] shows
that the derivability problem in ACTω is Π0

1-complete. On the other hand,
ACT is clearly recursively enumerable. This has two corollaries:

(i) there exists an RKL which is not *-continuous;

(ii) there exists a sequent provable in ACTω, but not in ACT (in other words,
true in all *-continuous RKL’s, but not in all RKL’s).

Buszkowski’s argument, however, is not constructive, giving neither an ex-
ample of a non-*-continuous RKL, nor a concrete sequent distinguishing ACTω

from ACT. We fill these gaps in Sections 2 and 3.
Before going further, let us mention other ways of proving statements (i)

and (ii) above. The first statement can be proved by applying the well-known
Gödel–Maltsev [10,23,24] compactness theorem 4 . Namely, one can write a
first-order theory in the signature Ω = (·, \, /,∧,∨,1, ∗; =,�) whose models
are exactly RKL’s 5 . For example, Lambek’s axiom for / becomes

∀x∀y∀z (x · y � z ↔ x � z / y);

for Kleene star one can take Pratt’s equational axiomatisation (based on pure
induction), etc. Notice that the strict version of the order, x ≺ y, is expressible
as (x � y) &¬(x = y). Now we add two new constant symbols, a and b, to
the signature and the following axioms to the theory: b ≺ a∗ and an ≺ b for
each n ≥ 0. Any finite subset of this theory includes only a finite number
of such axioms and can be easily satisfied on an RKL. For example, one can
take the powerset of the set of natural numbers with the set-theoretic lattice
structure, · for elementwise addition, the Kleene star defined *-continuously,
and a = {1}. Then take b = {0, 1, . . . , n0, n0 + 1}, where n0 is the biggest
value of n appearing in the axioms of the finite subset taken. By compactness
theorem, the whole theory also has a model. This model is an RKL, but fails
to be *-continuous: b is explicitly stated to be an upper bound for all an, which
is smaller than a∗. This way of showing existence of non-*-continuous RKL’s
is, however, also not constructive.

As for (ii), there exists a way of making the complexity argument presented
above in a sense constructive, using the notion of productive function 6 . Fol-
lowing the notation from Soare’s book [34], let Wx be the x-th r.e. set (i.e., x
is the natural number encoding the algorithm enumerating this set). A set P
is called productive, if there exists a computable partial function ψ, such that
if Wx ⊆ P , then ψ(x) is defined and is an element of the set difference P −Wx.
The function ψ itself is called productive function. The set K = {x | x /∈ Wx}
is clearly a productive one, with the trivial productive function ψid(x) = x.

4 Suggested by one of the anonymous reviewers.
5 The ∧ and ∨ algebraic operations here should not be confused with logical conjunction and
disjunction used in first-order logic. For logical conjunction we use & instead of ∧.
6 Suggested by Fedor Pakhomov and Scott Weinstein.
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Next, we use the following theorem [8, Theorem 2.1][26, Theorem 5][34, The-
orem 4.5iii]: if P1 is productive and it is m-reducible to P2, then P2 is also
productive. Let P be the set of theorems of ACTω. By the Π0

1-completeness
result by Buszkowski [5], K is m-reducible to P . Therefore, P is a productive
set with some computable productive function ψ. On the other hand, the set
of theorems of ACT is r.e., i.e., it is a Wy for some y; Wy ⊆ P , since ACT
is weaker than ACTω. Thus, ψ(y) is an element of P , but not Wy, in other
words, gives an example of a sequent provable in ACTω, but not ACT.

Theoretically, this example can be explicitly extracted from the reasoning
presented above. In order to do so, one needs to track the m-reduction of K
to P used by Buszkowski (via the totality problem for context-free grammars)
and transform it to a translation of the productive function from ψid to ψ. This
yields a concrete algorithm for ψ, which can then be applied to y, which is the
code of the algorithm for enumerating theorems of ACT; ψ(y) is guaranteed
to exist and it is the necessary example. In practice, however, performing this
procedure is quite problematic. In Section 3 we give a much shorter exam-
ple, which, moreover, exhibits some interesting structural features of proofs in
action logic.

1.4 Models for ACT and ACTω

As mentioned by Buszkowski [5], standard Lindenbaum algebra construction
shows that ACT and ACTω are complete, respectively, w.r.t. the class of all
RKL’s and the class of *-continuous RKL’s.

There are two more specific classes of RKL’s which are usually considered
as standard classes of models for the Lambek calculus and action logic.

The first one is the algebra P(Σ∗) of formal languages over a given alphabet
Σ (here and further P(X) stands for the set of all subsets of X). The preorder
is set-theoretical inclusion, and multiplication is defined as pairwise concate-
nation. It is well-known that this algebra is residuated. Language-theoretic
division operations are defined as follows:

x / y = max{z | z · y ⊆ x} = {u ∈ Σ∗ | (∀v ∈ y)uv ∈ x};

y \x = max{z | y · z ⊆ x} = {u ∈ Σ∗ | (∀v ∈ y) vu ∈ x}.
The preorder, ⊆, enjoys arbitrary meets and joins and therefore induces a
lattice structure. Finally, Kleene star is defined in the *-continuous way:

x∗ = sup{xn | n ≥ 0} = {u1 . . . un | n ≥ 0, ui ∈ x}.

Models of the Lambek calculus and action logic on such algebras are called
L-models.

The other class is formed by relational models, of the form P(W × W ),
where W is a non-empty set. Elements of P(W ×W ) are binary relations of
W . Multiplication is defined as composition of relations. The lattice structure
is set-theoretic. Relational algebras are also residuated. Kleene star x∗ is
defined as the reflexive-transitive closure of relation x. Models from this class
are called R-models.
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Both L- and R-models are *-continuous, so they form natural classes of
models for ACTω. It is well-known, however, that there is an obstacle to
completeness connected with distributivity. L- and R-models are distributive
lattices, i.e., enjoy x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). 7 On the other hand, one
of the distributivity laws, namely (A ∨ B) ∧ (A ∨ C) → A ∨ (B ∧ C), is not
derivable in MALC, and therefore in ACTω. (The fact that distributive law
is invalid in substructural logic was noticed by Ono and Komori [28].)

Another obstacle is connected with the unit constant, 1. Dividing the unit
by something, 1 / x, yields a trivialisation of the interpretation and therefore
extra sequents which are true, but not derivable. For both L- and R-models,
such a sequent is, for example, 1 /(p / p)→ (1 /(p / p)) · (1 /(p / p)) [4,25,18].

These incompleteness issues actually have nothing to do with the Kleene
star. In Section 4 we give a more fine-grained incompleteness result for language
and relational semantics of ACTω, where the Kleene star plays a crucial role.

Despite incompleteness, the lower complexity bounds (Π0
1-hardness), as

shown by Buszkowski [4], are also valid for deciding general truth in R- and
L-models. Essentially this comes from the fact that a fragment of ACTω suffi-
cient for encoding a Π0

1-hard problem is indeed R- and L-complete (see footnote
on page 508).

2 Example of an RKL which is not *-continuous

Kozen [15] presents an example of a Kleene algebra which is not *-continuous.
In his construction, A = {⊥} ∪ (N× N) ∪ {>}, where N× N is ordered lexico-
graphically, and ⊥ and > are artificially added minimum and maximum. The
following picture depicts the order on A:

• 7−→ 7−→ 7−→ · · · •
⊥ N N N >

Multiplication on N is componentwise addition: (a1, b1)·(a2, b2) = (a1+b1, a2+
b2); ⊥·x = x·⊥ = ⊥ and >·y = y ·> = > for y 6= ⊥. The Kleene star is defined
as follows: ⊥∗ = (0, 0)∗ = (0, 0), which is the unit element, and for x � (0, 0) we
have x∗ = >. One can see that (0, 1)∗ = >, while sup{(0, 1)n | n ≥ 0} = (1, 0),
which falsifies *-continuity.

This algebra has two extra properties: it is commutative and its order is
linear.

Unfortunately, it is not residuated: for example, for any z of the form (0, i)
we have z · (1, 1) = (1, i+ 1) ≺ (2, 0), but (1, 0) · (1, 1) = (2, 1) 6� (2, 0). Thus,
there is no (2, 0) /(1, 1) = max{z | z · (1, 1) � (2, 0)}.

This issue is quite a deep one, due to the following result which Restall [33]
attributes to Pratt, calling it Pratt’s normality theorem [33, Theorem 9.44]:
in an RKL, if there exists sup{an | n ≥ 0}, then it coincides with a∗. In
other words, whenever the *-continuous definition of Kleene star is available,
we cannot choose another, non-standard version of Kleene star.

7 As a basic fact of lattice theory, this also yields the dual: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
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This gives us a key how to fix Kozen’s construction and make it residuated:
we should avoid suprema (least upper bounds) in our model. Let A = {⊥} ∪
({0} × N) ∪ ({1, 2, . . . } × Z) ∪ {>}, with the following linear order:

• 7−→ ←→ ←→ · · · •
⊥ N Z Z >

Multiplication and Kleene star are defined exactly as in Kozen’s model. The
same reasoning shows that Kleene star is not *-continuous; > is still the small-
est fixpoint, and the supremum merely does not exist, since Z has no minimal
element. The only thing we need to check is that division (due to commutativ-
ity, we have only one division) here is correctly defined:

Lemma 2.1 For any x, y ∈ A, there exists max{z | z ·y � x} (which we denote
by x / y = y \x).

Proof. Easily, x /⊥ = >, > / y = >, ⊥ / y = ⊥ (for y 6= ⊥), x /> = ⊥ (for
x 6= >).

Now let x and y be pairs of numbers, x = (a1, a2), y = (b1, b2). Let us call
the fragment {i}×Z (i > 0) the i-th galaxy of A; the 0-th galaxy is truncated,
{0} × N. There are four possible cases:

• a1 < b1. Then b1 − a1 > 0, and therefore the (b1 − a1)-th galaxy is not
truncated, the second component there allows unrestricted subtraction, and
we have x / y = (b1 − a1, b2 − a2).

• a1 = b1, a2 ≤ b2. Then x / y = (0, b2 − a2).

• a1 = b1, a2 > b2. Then x / y = ⊥, since for no pair (c1, c2) ∈ A we can have
(a1 + c1, a2 + c2) � (b1, b2).

• a1 > b1. Then x / y = ⊥.
2

This example of non-*-continuous RKL inherits two extra properties of
Kozen’s example: commutativity and linearity of the order.

3 Example of a Sequent Distinguishing ACT and ACTω

In this section we present a concrete example of a sequent provable in ACTω,
but not in ACT. This is obtained by presenting a new induction principle for
action logic, which is admissible in the *-continuous situation, but does not
follow from the fixpoint axiomatisation of Kleene star (Pratt’s pure induction
principle). We call it the “induction-in-the-middle” rule:

Lemma 3.1 The following rule

→ B A→ B A,B,A→ B

A∗ → B
(∗ →)mid

is admissible in ACTω.
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Proof. By induction on n we show that all An → B are derivable from the
premises using cut. Then apply the ω-rule. 2

The next theorem shows, however, that (∗ →)mid is not valid in ACT. This
gives a concrete example of a sequent that distinguishes ACT and ACTω.

Theorem 3.2 The sequent

(p ∧ q ∧ (p / q) ∧ (p \ q))+ → p

is provable in ACT + (∗ →)mid (and therefore in ACTω), but not in ACT.

Proof. Proving (p ∧ q ∧ (p / q) ∧ (p \ q))+ → p in ACT + (∗ →)mid is easy.
First we establish a variant of the induction-in-the-middle rule for +:

A→ B A2 → B A,B,A→ B

A+ → B
(+ →)mid

This new rule is obtained from (∗ →)mid by the following derivation (recall that
A+ = A ·A∗):

A→ B

→ A \B
(→ \) A2 → B

A→ A \B
(→ \)

A→ A A,B,A→ B

A,A,A \B,A→ B
(\ →)

A,A \B,A→ A \B
(→ \)

A∗ → A \B
(∗ →)mid

A→ A B → B

A,A \B → B
(\ →)

A,A∗ → B
(cut)

A · A∗ → B
(· →)

Next, since p → p, and p / q, q → p, and p / q, p, p \ q → p are derivable in
the Lambek calculus, for A = (p ∧ q ∧ (p / q) ∧ (p \ q)) we have A → p, and
A2 → p, and A, p,A→ p, by applying (∧ →) several times. Now the (+ →)mid

rule yields the necessary sequent A+ → p.
In order to show that this sequent is not derivable in ACT, we construct a

counter-model, i.e., an RKL in which this sequent is false. 8

Fix a two-letter alphabet Σ = {a, c} and consider two families of formal
languages, L1 and L2, defined as follows:

(i) L1 is the family of all finite subsets of {an | n ≥ 0}, including ∅ and {ε}
(ε is the empty word), which will be the zero and the unit of our RKL;

(ii) L2 is the family of all languages of the form

A ∪
⋃
h≥0

{aicai+h | i ≥ fR(h)} ∪
⋃
h>0

{ai+hcai | i ≥ fL(h)},

where A is a cofinite subset of {an | n ≥ 0} and fL, fR : N → N are
functions of at least linear growth. Throughout this paper, “f is a function
of at least linear growth” means that, for all h, f(h) ≥ αh + β for some
rational α and β, α > 0.

8 We cannot use the non-*-continuous RKL from Section 2 here, since it is commutative,
and in the commutative case (∗ →)mid becomes admissible in ACT.
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Let L = L1 ∪ L2 and ∞ be an extra object (fresh constant) not belonging to
L. Now let us define an RKL structure on A = L ∪ {∞}.
(i) The preorder, �, is defined as set-theoretic inclusion, ⊆, on L, and ∞

is declared the maximal element. Since L is closed under (finite) unions
and intersections (for x, y ∈ L2 it follows from the fact that pointwise
minimum and maximum of two functions of at least linear growth are
again functions of at least linear growth; other cases are obvious), this
preorder forms a lattice structure on A.

(ii) Multiplication, x · y, is defined as follows:
• pairwise concatenation (as in L-models), if x and y are both in L1 or if

one of the arguments is in L1 and the other is in L2 (for the second case
correctness follows from Lemma 3.3 below);

• ∞, if x and y are both in L2;
• ∞ ·∅ = ∅ · ∞ = ∅;
• ∞ · x = x · ∞ =∞, if x 6= ∅.
Checking associativity is routine. The unit is {ε}.

(iii) Left and right divisions are correctly defined due to Lemma 3.4 below.

(iv) Finally, Kleene star is defined as follows: ∅∗ = {ε}∗ = {ε}; x∗ = ∞ for
x 6= ∅, {ε}. We show that this definition is correct by verifying Pratt’s
pure induction condition, (x /x)∗ = x /x. For x = ∅ and x = ∞ we
have x /x = ∞, ∞∗ = ∞. For x 6= ∅,∞ we use Lemma 3.5 below
showing that x /x = {ε}; {ε}∗ = {ε}. Other conditions accompanying
pure induction in Pratt’s system are obvious: our definition of Kleene star
is clearly monotone, for any x we have 1 � x∗ and x � x∗, and since x∗ is
either {ε} or ∞, we also have x∗ · x∗ � x∗.

Below we state and prove several lemmata supporting correctness of this
definition.

Lemma 3.3 If x ∈ L1, x 6= ∅, and y ∈ L2, then x · y and y · x, where
multiplication is defined as pairwise concatenation, are both in L2. (If x = ∅,
then x · y = y · x = ∅ ∈ L1.)

Proof. We show that x · y ∈ L2 (the statement for y · x is symmetric). Since
finite unions of languages from L2 belong to L2, it is sufficient to consider
x = {ak} and show that {ak} · y ∈ L2. Recall that

y = A ∪
⋃
h≥0

{aicai+h | i ≥ fR(h)} ∪
⋃
h>0

{ai+hcai | i ≥ fL(h)},

whence

{ak} · y = {ak} ·A ∪
⋃
h≥0

{ai+kcai+h | i ≥ fR(h)} ∪
⋃
h>0

{ai+h+kcai | i ≥ fL(h)}.

Apply the following transformations:⋃
h>0

{ai+h+kcai | i ≥ fL(h)} =
⋃
`1>k

{ai+`1cai | i ≥ fL(`1 − k)},
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where `1 = h+ k;⋃
h≥k

{ai+kcai+h | i ≥ fR(h)} =
⋃
`2≥0

{aj2caj2+`2 | j2 ≥ fR(`2 + k) + k},

where `2 = h− k, j2 = i+ k;⋃
0≤h<k

{ai+kcai+h | i ≥ fR(h)} =
⋃

0<`3≤k

{aj3+`3caj3 | fR(k − `3) + k − `3},

where `3 = k − h, j3 = i+ h.
This yields

{ak} · y = Ã ∪
⋃
`≥0

{aicai+` | i ≥ f̃R(`)} ∪
⋃
`>0

{ai+`cai | i ≥ f̃L(`)},

where Ã = {ak} ·A is a cofinite subset of {an | n ≥ 0} and f̃R and f̃L, defined
as follows

f̃R(`) = fR(`+ k) + k;

f̃L(`) =

{
fL(`− k) for ` > k,

fR(k − `) + k − ` for 0 < ` ≤ k,

are both functions of at least linear growth 9 (f̃L can actually decrease on h ≤ k,
but at least linear growth is an asymptotic property). Therefore {ak}·y ∈ L2.2

Lemma 3.4 For any elements x, y ∈ A there exist x / y = max{z | z · y � x}
and y \x = max{z | y · z � x}.
Proof. Consider only x / y (y \x is symmetric). First we handle some degen-
erate cases:

• y = ∅: since z ·∅ = ∅ for any z, we have x /∅ =∞.
In particular, ∅ /∅ =∞.

• x =∞: since z · y � ∞ for any z, we have ∞ / y =∞.
In particular, ∞ /∞ =∞.

• y = ∞, x 6= ∞: since z · ∞ � x holds only for z = ∅ (in this case we get
∅ � x, otherwise ∞ 6� x), we have x /∞ = ∅.

Thus, now we have only the interesting case of x, y ∈ L, y 6= ∅. First we show
that in this case x / y can be defined exactly as in L-models (Subsection 1.4).
Namely, if the language z0 = {u ∈ {a, c}∗ | (∀v ∈ y)uv ∈ x} (the language-
theoretic division of x by y) belongs to L, then z0 = x / y = max{z · y � x} in
A (i.e., maximum is taken over all elements of A, including ∞, and w.r.t. �).

Indeed, z0 · y ⊆ x, and therefore z0 · y � x. Now let z · y � x for some other
z. Since y 6= ∅, z cannot be ∞ (∞ · y =∞ 6� x). Hence, z ∈ L, z · y ⊆ x, and

9 Recall that k is constant.
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since z0 is the language-theoretic division, z ⊆ z0 and therefore z � z0. Thus,
z0 is the maximum in A.

Now it is sufficient to show that L is closed under language-theoretic division
operations (with non-zero denominator). Consider four possible cases:

• x, y ∈ L1. The class of finite language over an alphabet is closed under
language-theoretic division, provided the denominator is not ∅.

• x ∈ L1, y ∈ L2. In this case x / y = ∅, since there exists a word v0 =
ai0cai0 ∈ y, and for any u ∈ {a, c}∗ the word uv0 contains c, and therefore
cannot belong to x.

• x ∈ L2, y ∈ L1. Since in L-models x /(y1∪ . . .∪yn) = (x / y1)∩ . . .∩ (x / yn),
and y, being a non-empty finite set, is a finite union of singletons, it is
sufficient to show that z0 = x /{ak} = {u ∈ {a, c}∗ | uak ∈ x} belongs to L2.
Recall that x, being a language from L2, has the form

x = A ∪
⋃
h≥0

{aicai+h | i ≥ fR(h)} ∪
⋃
h>0

{ai+hcai | i ≥ fL(h)}.

Next, since in L-models for x =
⋃
γ xγ (x is an infinite union) we have

x /{ak} =
⋃
γ(xγ /{ak}), we can divide each component of x by {ak} inde-

pendently:⋃
h≥k

{aicai+h | i ≥ fR(h)} /{ak} =
⋃
`1≥0

{aicai+`1 | i ≥ fR(`1 + k)},

where `1 = h− k;⋃
0≤h<k

{aicai+h | i ≥ fR(h)} /{ak} =⋃
0<`2≤k

{aj2+`2caj2 | j2 ≥ max{0, fR(k − `2)− `2}},

where `2 = k − h, j2 = i+ h− k = i− `2;⋃
h>0

{ai+hcai | i ≥ fL(h)} /{ak} =⋃
`3>k

{aj3+`3caj3 | j3 ≥ max{0, fL(`3 − k)− k}},

where `3 = h+ k, j3 = i− k.
Thus,

x /{ak} = Ã ∪
⋃
h≥0

{aicai+h | i ≥ f̃R(h)} ∪
⋃
h>0

{ai+hcai | i ≥ f̃L(h)},

where Ã = A/{ak} is a cofinite subset of {an | n ≥ 0}, and f̃R and f̃L,
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defined as follows

f̃R(`) = fR(`+ k);

f̃L(`) =

{
max{0, fR(k − `)− `} for 0 < h ≤ k,

max{0, fL(`− k)− k} for h > k,

are functions of linear growth (again, for f̃L growth starts from h > k).

• x, y ∈ L2. We show that in this case z0 = {u ∈ {a, c}∗ | (∀v ∈ y)uv ∈ x}
belongs to L1. Indeed, if u includes at least one letter c, then for v0 =
ai0cai0 ∈ y the word uv0 includes at least two c’s, and cannot belong to y.
Thus, z0 ⊆ {an | n ≥ 0}, and it remains to show that z0 is finite. Let ak

be an element of z0. Fix an arbitrary aicai ∈ y (such an element exists by
definition of L2) and multiply it by ak. We get aicai+k ∈ x. This yields
i ≥ fR(k), where fR is taken from the L2 representation of x, and by growth
condition i ≥ αk+β. Since α > 0, we get k ≤ (i−β)/α, which establishes a
global boundary for possible values of k: recall that i, α, and β were taken
independently from k. Therefore, z0 ⊆ {ak | 0 ≤ k ≤ (i− β)/α} is finite and
belongs to L1.

2

Lemma 3.5 For any x, except ∅ and ∞, x /x = {ε}.
Proof. Since {ε} is the unit of A, {ε} · x = x, therefore x /x � {ε}. Suppose
there exists z � {ε} such that z · x � x. Then {ak} � z for some k > 0,
and by monotonicity {ak} · x � x (monotonicity of · w.r.t. � holds in all
residuated lattices, since the corresponding logical rule is admissible in the
Lambek calculus [21]). Consider two cases:

• x ∈ L1, x 6= ∅. Then let am be the element of x with the greatest m. Clearly,
akam /∈ x, therefore {ak} · x 6� x.

• x ∈ L2. Take ai0cai0 ∈ x (exists by definition of L2). Since {ak} · x � x,
we have ai0+kcai0 ∈ x, ai0+2kcai0 ∈ x, . . . , ai0+mkcai0 ∈ x, . . . Thus,
fL(mk) ≤ i0 for arbitrary big m, which contradicts with the growth condition
for fL.

2

Now we finish the proof of Theorem 3.2 by falsifying (p ∧ q ∧ (p / q) ∧
(p \ q))+ → p in the newly constructed RKL:

Lemma 3.6 If p is interpreted as the language from L2 with A = {an | n ≥ 0}
and fL(h) = fR(h) = 2h, and q = p · {a}, then p ∧ q ∧ (p / q) ∧ (p \ q) = {a}.
Thus, since {a}+ = ∞ 6� p, the sequent (p ∧ q ∧ (p / q) ∧ (p \ q))+ → p is not
true under this intepretation.

Proof. Clearly, a ∈ p, and, since ε ∈ p, also a ∈ q. Next, p · {a} � q yields
{a} � p \ q.

Next, let us show that p / q = {a}. As follows from the proof of Lemma 3.4,
since both p and q are elements of L2, p / q ∈ L1, i.e., it is a finite subset of
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{an | n ≥ 0}. This means that p / q = {an | (∀v ∈ q) anv ∈ p}, and since any
v ∈ q is of the form ua, where u ∈ p, we have p / q = {an | (∀u ∈ p) anua ∈ p}.

For n = 1 we indeed have aua ∈ p for any u ∈ p (all three components in
the L2 representation of p are upwardly closed under multiplication by a on
both sides).

For n = 0, take u = c. Since fR(0) = 0, it is an element of p. The word
ua = ca, however, is of the form aicai+h for i = 0 and h = 1, and since
fR(1) = 2 > 0, this word does not belong to p. Therefore, ε = a0 /∈ p / q.

Analogous reasoning applies to n > 1. Again, take u = c ∈ p and consider
the word anua = anca, which is of the form ai+hcai for i = 1 and h = n−1 > 0.
Having fL(n − 1) = 2(n − 1) ≥ 2 > 1, we show that this word is not in p,
therefore an /∈ p / q for n > 1.

Finally, having p / q = {a} and p, q, p \ q � {a}, we obtain p ∧ q ∧ (p / q) ∧
(p \ q) = {a}. 2

This finishes the proof of Theorem 3.2. 2

We conclude this section with some general remarks. The search for con-
crete formulae witnessing the fact that ω-rules are more powerful than induction
has a long history, starting from Gödel’s Second Incompleteness Theorem [11].
The formula there is the well-known consistency statement: “for all n, n does
not encode a proof of contradiction.” Later, other arithmetical statements that
are true, but not provable in Peano arithmetic (i.e., using the standard induc-
tion principle), of more combinatorial nature, were discovered. These include
Hercules vs. Hydra by Kirby and Paris [13], Beklemishev’s worm [2], etc. An
example closer to our discussion was discovered by Kozen for PDL [14]. The
key feature of our example is that it is formulated in a propositional language,
while the formulae mentioned above are first-order ones. On the other hand,
our example actually shows not the weakness of induction in general, but rather
the fact that in action logic there exist induction principles different from (and
not following from) Pratt’s pure induction, but yet not transfinite.

4 Incompleteness of ACTω(·, \, /,∧, ∗) w.r.t. R- and
L-models

Though relational and language models, both being *-continuous, are natu-
ral classes of interpretations for ACTω, there are well-known obstacles to
completeness connected with distributivity and the unit constant (see Sub-
section 1.4). Without these problematic connectives, ∨ and 1, there is a hope
for R- and L-completeness. This hope is supported by completeness results
for the corresponding fragment without ∗, MALC(·, \, /,∧): see Andréka and
Mikulás [1] for R-models of MALC(·, \, /,∧), Buszkowski [3] for L-models
of the product-free system MALC(\, /,∧), Pentus [30,31] for L-models of
the Lambek calculus (in our notation, MALC(·, \, /)). L-completeness of
MALC(·, \, /,∧), with both multiplication and intersection, is still an open
problem, and there are no arguments against the positive answer.

This motivates us to consider the fragment ACTω(·, \, /,∧, ∗) and conjec-



Kuznetsov 507

ture its R- and L-completeness. Disjunction, however, is hidden inside Kleene
star: a∗ = 1 ∨ a+, and distributivity can shoot around the corner, making
ACTω incomplete even in this restricted fragment.

Theorem 4.1 The sequent

(s /(r / r)) ∧ (s /(p+ ∧ q+))→ s /(p∗ ∧ q∗)

is true in all distributive RKL’s, but not provable in ACTω.

Proof. First we show that this sequent is true in all distributive RKL’s. Recall
that A∗ ↔ 1 ∨A+. By distributivity and monotonicity of ∧, we get

p∗ ∧ q∗ → (1 ∨ p+) ∧ (1 ∨ q+)→ 1 ∨ (p+ ∧ q+)→ (r / r) ∨ (p+ ∧ q+).

Next, we put this under s / ... (the direction of the arrow changes), which allows
us to replace ∨ by ∧ using (A/B) ∧ (A/C)→ A/(B ∨ C):

(s /(r / r)) ∧ (s /(p+ ∧ q+))→ s /((r / r) ∨ (p+ ∧ q+))→ s /(p∗ ∧ q∗).

The reasoning above can be done in ACT + distributivity axiom. Thus,
the goal sequent is true in all distributive RKL’s.

For the second part, non-derivability in ACTω, we recall that cut is elim-
inable in this calculus [29] and perform exhaustive proof search. Since the
(→ /) rule is invertible, we can suppose that it was applied as the last step of
the derivation:

(s /(r / r)) ∧ (s /(p+ ∧ q+)), p∗ ∧ q∗ → s

(s /(r / r)) ∧ (s /(p+ ∧ q+))→ s /(p∗ ∧ q∗)
(→ /)

Now we have four options for applying the (∧ →) rule, with the following
premises:

(i) s /(r / r), p∗ ∧ q∗ → s;

(ii) s /(p+ ∧ q+), p∗ ∧ q∗ → s;

(iii) (s /(r / r)) ∧ (s /(p+ ∧ q+)), p∗ → s;

(iv) (s /(r / r)) ∧ (s /(p+ ∧ q+)), q∗ → s.

These sequents are not generally true in L-models, and therefore are not deriv-
able in ACTω. The counter-interpretations are as follows:

(i) s = r = {ε}, p = q = {a};
(ii) s = {a}+, p = q = {a};
(iii) s = r = {ε}, p = {a}, q = ∅;

(iv) s = r = {ε}, p = ∅, q = {a}.
2
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5 Conclusions and Future Work

The counter-model used in the proof of Theorem 3.2 is quite an ad hoc invention
to falsify one particular sequent. On the other hand, it is very closely related
to L-models (which are all *-continuous, and therefore useless in connection
to Theorem 3.2). It looks interesting to perform a more systematic study
of variants of L-models with Kleene star, and possibly find natural classes of
models which are not *-continuous (i.e., give semantics for ACT, but not
ACTω). One possible starting point for such a study is the interpretation
of MALC on syntactic concept lattices (SCL’s) by Wurm [35]. SCL’s are
much like L-models, but can be, for example, non-distributive, thus avoiding
incompleteness issues for meet and join.

Our (∗ →)mid rule is actually one of an infinite series of induction-in-the-
middle rules arising from circular proof systems [20]:

→ B A→ B . . . Am+k−1 → B Am, B,Ak → B

A∗ → B

All these rules are admissible in ACTω, but even if we add all of them, we still
get a system weaker than ACTω (due to complexity reasons: it is still r.e.).
The question is how do these rules interact with each other: for example, is
there a finite subfamily of these rules which derives all of them?

Our example of a sequent derivable in ACTω, but not in ACT, contains ad-
ditive conjunction, ∧. Buszkowski [5], however, also proves Π0

1-completeness for
the fragment with ∨ instead of ∧. Moreover, in the view of the Π0

1-completeness
result [20] for a closely related system, with Lambek’s restriction, it is highly
likely that even in the multiplicative-only fragment, including ·, \, /, and ∗,
the infinitary system ACTω is stronger than ACT. The task of finding con-
crete examples of sequents to distinguish the two systems in these restricted
fragments is left open for future research.

As for L- and R-completeness, the question is still open whether
the purely multiplicative Lambek calculus with iteration (in our notation,
ACTω(·, \, /, ∗)) is L-complete (R-complete). 10

Finally, we still have the old problem of constructing a good (cut-free)
Gentzen-style system for ACT. For Kleene algebra, there is a recent approach
by Das and Pous [7], who present a cut-free hypersequential calculus with
circular proofs. Unfortunately, their approach cannot be directly generalised
to the residuated case.

10L-completeness is known for two fragments of this calculus. In the first fragment, Kleene
star is allowed only on the top level in formulae of the antecedent. In this case completeness
follows from that of the original Lambek calculus due to invertibility of (∗ →). The second
fragment is the product-free Lambek calculus with ∗ allowed only in denominators of \ and
/ (i.e., in subformulae of the form A∗ \B and B /A∗). L-completeness for the variant of this
fragment, with Lambek’s restriction and positive iteration in place of Kleene star, is stated
in [19].
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Ped. Inst. Uč. Zap. Fiz.-Mat. Fak. 1 (1941), pp. 3–9.

[25] Morrill, G. V., “Categorial Grammar: Logical Syntax, Semantics, and Processing,”
Oxford University Press, 2011.

[26] Myhill, J., Creative sets, Zeitschift für mathematische Logik and Grundlagen der
Mathematik 1 (1955), pp. 97–108.

[27] Ono, H., Semantics for substructural logics, in: P. Schroeder-Heister and K. Došen,
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