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Abstract

It is known that in the lattice of normal extensions of the logic KTB there are
unique logics of codimensions 1 and 2, namely, the logic of a single reflexive point,
and the logic of the total relation on two points. A natural question arises about the
cardinality of the set of normal extensions of KTB of codimension 3. Generalising two
finite examples found by a computer search, we construct an uncountable family of
(countable) graphs, and prove that certain frames based on these produce a continuum
of normal extensions of KTB of codimension 3. We use algebraic methods, which in
this case turn out to be better suited to the task than frame-theoretic ones.
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1 Introduction

The Kripke semantics of KTB is the class of reflexive and symmetric frames,
that is, frames whose accessibility relation is a tolerance. Since irreflexivity
is not modally definable, it can be argued that KTB is the logic of simple
graphs. Yet KTB is much less investigated that its transitive cousins, and in
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fact certain tools working very well for transitive logics (for example, canonical
formulas) have no KTB counterparts working nearly as well. Among the arti-
cles dealing specifically with KTB and its extensions, Kripke incompleteness
in various guises was investigated in [15] and [6], interpolation in [7] and [9],
normal forms in [16], and splittings in [17], [10] and [8]. In the present arti-
cle we focus on the upper part of the lattice of normal (axiomatic) extensions
of KTB, or viewed dually, the lower part of the lattice of subvarieties of the
corresponding variety of modal algebras.

The article is centred around a single construction, so it is structured rather
simply: in the present section we give necessary preliminaries, in Section 2 we
outline the history of the problem, in Section 3 we present the main construction
and in Section 4 we draw the conclusion that there are uncountably many
extensions of KTB of codimension 3.

Although we will use algebraic methods, we wish to move rather freely
between graphs, frames and algebras. To make these transitions smooth we
now establish a few conventions, the general principle behind them being that
italic capitals stand for graphs, blackboard bold capitals for Kripke frames,
and boldface capitals for algebras. With every simple graph G = 〈V ;E〉, finite
or infinite, we associate a Kripke frame G with the same universe and the
reflexive closure of E as the accessibility relation. For example, Ki will be a
looped version of Ki, the complete graph on i vertices. Thus, K1 is a single
reflexive point, and K2 a two-element cluster. We will refer to these frames
simply as graphs, unless the context calls for disambiguation. For a graph G,
we will write Cm(G), to denote its complex algebra. The figure below illustrates
our conventions.

Fig. 1. Diagrams of K2, K2 and Cm(K2).

If G is infinite, Cm(G) will typically be too big for our purposes, but certain
special subalgebras of Cm(G) will play a critical role. These algebras are math-
ematically the same as general (descriptive) frames over G, so the machinery
of bounded morphisms reduces in these cases to verifying whether the identity
map is one. The identity map is of course frame-theoretically invisible, so all
that remains is algebra. This is essentially why algebraic methods are better
suited to the task.

We assume familiarity with the basics of universal algebra and model the-
ory. To be more precise, ultraproducts and  Loś Theorem, Jónsson’s Lemma
for congruence-distributive varieties, and some consequences of the congruence
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extension property will suffice. All of these concepts are covered in [1] and [3].
Our algebraic notation is standard: we use upright I, H, S, P, and PU for the
usual class operators of taking isomorphic copies, homomorphic images, subal-
gebras, direct products and ultraproducts, respectively. We also write Si(C) for
the class of subdirectly irreducible algebras in C. The variety generated by a
class of algebras C we denote by Var(C), so Var is a shorthand for HSP. When
we deal with Boolean algebras of sets, we use the standard set theoretical ∪
and ∩, and we write ∼X instead of ¬X for the complement of X.

1.1 KTB-algebras

A KTB-algebra is an algebraic structure A = 〈A;∨,∧,¬,3, 0, 1〉 such that
〈A;∨,∧,¬, 0, 1〉 is a Boolean algebra, and 3 a unary operation satisfying the
following conditions:

(i) 30 = 0,

(ii) 3(x ∨ y) = 3x ∨3y,

(iii) x 6 3x,

(iv) x 6 23x,

where 2, as usual, stands for ¬3¬ The last two conditions can be rendered as
identities and so the class of KTB-algebras is a variety, which we will denote
by B. The inequality (iv) is also equivalent to:

x ∧3y = 0 ⇐⇒ 3x ∧ y = 0.

Therefore, 3 is a self-conjugate operator in the sense of [4], [5] and so B is a
variety of self-conjugate Boolean Algebras with Operators (BAOs). Inciden-
tally, the equational axiomatisation above is equivalent to the quasiequational
one below:

(1) x 6 y =⇒ 3x 6 3y,

(2) x 6 3x,

(3) x 6 23x.

For completeness, we include the following well known propositions (see [4],
[13], [1] and [3] for proofs and useful exercises). The first two deal with KTB-
algebras, and the third one recalls some crucial facts from universal algebra.

Proposition 1.1 For any graph G = 〈V ;E〉, the algebra Cm(G) is a KTB-
algebra. The class of all such algebras generates the variety B.

Proposition 1.2 The variety B is congruence distributive and has the congru-
ence extension property.

Proposition 1.3 Let V be a variety of algebras, and C a subclass of V.

(i) If V has the congruence extension property, A is a simple algebra in V
and B ∈ IS(A), then B is simple.

(ii) If V has the congruence extension property, then HS(C) = SH(C).



450 Normal Extensions of KTB of Codimension 3

(iii) If V is congruence distributive, then Si(Var(C)) = Si(HSPU(C)).
(iv) We have V = Var(Si(V)).

As usual, we define the term operations 3n, one for each n, recursively,
putting 30x = x and 3n+1x = 33nx.

Definition 1.4 Let B = 〈B;∨,∧,¬,3, 0, 1〉 ∈ B. Then the map γ : B → B
given by γ(x) = 23x is a closure operator on B, which we call the natural
closure operator on B.

The following properties of natural closure operators will be useful.

Lemma 1.5 Let B = 〈B;∨,∧,¬,3, 0, 1〉 ∈ B and let γ denote the natural
closure operator on B.

(i) If x ∈ B is γ-closed, then ¬x = 3¬3x and 3¬x = 32¬3x.

(ii) If x ∈ B, then 3γ(x) = 3x.

Proof. Let x ∈ B. If x is γ-closed, then x = 23x, thus ¬x = 3¬3x and so
3¬x = 32¬3x, hence (i) holds.

As γ is a closure operator, we have x 6 γ(x), hence 3x 6 3γ(x). Similarly,
¬3x 6 γ(¬3x) = 23¬3x = ¬323x = ¬3γ(x), so 3γ(x) 6 3x. Thus,
3γ(x) = 3x, hence (ii) holds. 2

Lemma 1.6 Let B = 〈B;∨,∧,¬,3, 0, 1〉 ∈ B and let γ be the natural closure
operator of B. If B |= ∃x : x 6= 0 & 3x 6= 1 and B |= ∀x : x 6= 0 → 3nx = 1,
for some n ∈ ω \{0}, then there is a γ-closed y ∈ B with 3y 6= 1 and 32y = 1.

Proof. Let x be a witness of ∃x : x 6= 0 & 3x 6= 1 in B. By assumption,
B |= ∀x : x 6= 0 → 3nx = 1, so we must have 3nx = 1. Hence, there is
some m ∈ {1, . . . , n − 1} with 3mx 6= 1 and 3m+1x = 1. By Lemma 1.5(ii),
3γ(3m−1x) = 3mx 6= 1 and 3m+1x = 1. Since γ(3m−1x) is γ-closed, putting
y = γ(3m−1(x)), we get a γ-closed y ∈ B with 3y 6= 1 and 32y = 1, as
required. 2

2 The history of the problem

A logic L is said to have codimension n, in some lattice Λ of logics, if there
exists a descending chain L0 � · · · � Ln of logics from Λ, such that L0 is
inconsistent, Ln = L, and Li−1 covers Li for each i ∈ {0, . . . , n}. Lattices of
nonclassical logics are typically very complicated, so looking at logics of small
codimensions is one way of analysing these lattices. In particular, finding the
smallest n for which there are uncountably many logics of codimension n in Λ
indicates at which level the lattice gets really badly complicated.

Let NExt(KTB) stand for the lattice of normal extensions of KTB, where
we identify logics with their sets of theorems. We intend to show that for
Λ = NExt(KTB) the smallest such n is 3.

Remark 2.1 If we identified logics with their consequence operations, rather
than their sets of theorems, NExt(KTB) would be the the lattice of normal
axiomatic extensions of KTB. Let us call the lattice of all normal extensions of
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KTB, whether axiomatic or not, CNExt(KTB). Then NExt(KTB) is a sub-
poset of CNExt(KTB). However, the codimension of a logic L ∈ NExt(KTB)
can be smaller in NExt(KTB) than the codimension of L in CNExt(KTB).
It follows from results of Blanco, Campercholi and Vaggione (see Theorem 1
in [2]) that for any logic L ∈ NExt(KTB) of codimension at least 2, NExt(L)
is strictly contained in CNExt(L).

Let Subv(B) stand for the lattice of subvarieties of B. Then, the usual dual
isomorphism between NExt(KTB) and Subv(B) holds, and therefore logics of
codimension n in NExt(KTB) correspond to varieties of height n in Subv(B).
The next theorem gives a complete picture of Subv(B) up to height 2, and there-
fore, dually, of NExt(KTB) down to codimension 2. The second statement in
the theorem is due to the third author (see [17]).

Theorem 2.2 The lattice Subv(B) has exactly one atom, namely
Var(Cm(K1)). This atom in turn has exactly one cover, namely Var(Cm(K2)).

A natural question then arises about the cardinality of the “set” of va-
rieties covering Var(Cm(K2)). It is easy to show that this “set” is infinite:
countably many varieties covering Var(Cm(K2)) were constructed by the sec-
ond and fourth author in an unpublished note [12], using certain finite graphs.
But finite graphs clearly could not suffice for a construction of uncountably
many varieties covering Var(Cm(K2)). A construction of an appropriate un-
countable family of countably infinite graphs began by finding two finite ones,
called below G1 and G2:

Fig. 2. Graph drawings of G1 and G2 (with loops omitted).

These were found by the second and fourth authors through a computer
search, performed with the help of Brendan McKay’s nauty (see [14]). All
non-isomorphic graphs with up to 13 vertices were generated, and checked for
the property of not admitting any bounded morphism, except the identity map,
the constant map onto K1, and a bounded morphism onto K2. By finiteness,
this is sufficient (and also necessary) for the logic of such a graph G to be of
codimension 3, or, equivalently, for Var(Cm(G)) to be a cover of Var(Cm(K2)).

Two of these graphs are depicted in Figure 2. They were the only ones
that revealed a workable family resemblance to one another. They were also
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so different from the finite graphs considered in [12] as to be completely unex-
pected to the finders. Verifying by hand that the bounded morphism condition
mentioned above indeed holds, is tedious but not difficult, and so it was proved
that Var(Cm(G1)) and Var(Cm(G2)) indeed cover Var(Cm(K2)), confirming the
computer-assisted finding.

Extending the zigzaging pattern infinitely to the right is then a no-brainer,
and a suitable twisting of the zigzag produces an uncountable family of pairwise
non-isomorphic graphs. The next step is to take certain subalgebras of the
complex algebras of these infinite graphs (unlike in the finite case, the full
complex algebras may not do), and prove that the varieties they generate are
pairwise distinct and cover Var(Cm(K2)). The three last authors did produce
a rough approximation to a proof, which was convincing enough (for them) to
announce the result (see [11]). However, the full proof was never published,
and in fact it did not exist, as the details were never satisfactorily verified. The
three authors dispersed around the globe and the proof was left unfinished. It
took about 10 years, and the first author, to produce a complete proof. We are
going to present it now.

3 Construction

Before we begin, we make one more remark on the methods. The construction
presented below may at first glance suggest that the reasoning about ultrapow-
ers, which will play an important part in the proofs, is not necessary, because
everything that could go wrong in an ultrapower already goes wrong in the
original algebra. Were it so, the proofs could be greatly simplified, but unfor-
tunately the first glance is misleading. There exists an infinite KTB-algebra
A such that HS(A) does not contain Cm(K3), but HSPU(A) does, so A does
not generate a cover of Var(K2). Considering ultrapowers is necessary, at least
in principle.

Now, for the construction. Firstly, we will need the following Lemma, which
is an easy consequence of Proposition 1.3(iii).

Lemma 3.1 We have Si(Var(Cm(K2))) = I({Cm(K1),Cm(K2)}).

Next, we state a sufficient set of conditions for an algebra in B to generate
a variety of height 3.

Lemma 3.2 Let A ∈ B and assume that A has the following properties:

(i) A is infinite;

(ii) Cm(K2) ∈ IS(A);

(iii) every member of PU(A) is simple;

(iv) for all B ∈ ISPU(A), we have B ∼= Cm(K1), B ∼= Cm(K2) or A ∈ IS(B).

Then Var(A) is of height 3.

Proof. Based on (iii), HPU(A) = I({T}∪PU(A)), for some trivial T ∈ B. So,
by Proposition 1.3, Si(Var(A)) = Si(HSPU(A)) = Si(SHPU(A)) = ISPU(A).
Clearly, A ∈ ISPU(A), so (i), (ii) and Lemma 3.1 tell us that Var(A) properly
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extends Var(Cm(K2)). Let V be a variety with Var(Cm(K2)) ⊆ V ⊆ Var(A).
Since V ⊆ Var(A), we have Si(V) ⊆ Si(Var(A)) = ISPU(A). Combining this
with (iv) and Lemma 3.1, we find that Si(V) ⊆ Si(Cm(K2)) or A ∈ IS(V) = V.
So, by Proposition 1.3, we must have V = Var(Cm(K2)) or V = Var(A). Hence,
Var(A) covers Var(Cm(K2)), so Var(A) has height 3, as claimed. 2

Our construction of a continuum of subvarieties of B of height 3 begins with
the following definition.

Definition 3.3 Let E denote the set of positive even numbers, let A = {a},
B = {b1, b2, b3}, C = {c1, c2}, D = {d}, U = {ui | i ∈ ω \ {0}} and L = {`i |
i ∈ ω} be pairwise disjoint, and assume that ui 6= uj , `i 6= `j , bi 6= bj and
ci 6= cj whenever i 6= j. Now, define Ui := {ui}, for all i ∈ ω \ {0}, Li := {`i},
for all i ∈ ω, Bi := {bi}, for all i ∈ {1, 2, 3}, Ci := {ci}, for all i ∈ {1, 2},
and P := {b1, c1, d}. For each N ⊆ E, let FN be the graph 〈W ;RN 〉, where
W := A ∪B ∪ C ∪D ∪ U ∪ L and RN is the relation defined by

x RN y ⇐⇒ x = y or {x, y} =



{a, bi}, for some i ∈ {1, 2, 3},
{bi, ci}, for some i ∈ {1, 2},
{c1, d},
{`0, `1},
{a, `i}, for some i ∈ ω,
{`i, ui}, for some i ∈ ω \ {0},
{`i, ui−1}, for some i ∈ E,
{`i, ui+1}, for some i ∈ N or

{`i+1, ui}, for some i ∈ E \N.

As usual with graphs, a picture is worth a thousand words. Certainly it is
worth all the words of the definition above. Here it is.

u1 u2 u3 u4 u5

`0 `1 `2
`3 `4 `5

a

b1

c1

d

b2

c2

b3

u1 u2 u3 u4 u5

`0 `1 `2
`3 `4

`5

a

b1

c1

d

b2

c2

b3

Fig. 3. Graph drawings of (finite sections of) F∅ and F{2,4} (with loops omitted).

Accordingly, in the proofs, we will frequently refer to Fig. 3, as well as
to Fig. 4 below, rather than to Definition 3.3. Next, we define the algebras
essential to our construction. The notation is as in Definition 3.3.
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Definition 3.4 For each N ⊆ E, let DN be the subalgebra of Cm(FN ) gener-
ated by D and let DN be the universe of DN .

From now on, we will use 3N to stand for R−1
N , and we will omit the

subscript N if there is no danger of confusion.

Lemma 3.5 Let N ⊆ E. Then A,B1, B3, C1, D, Li, Uj , B2 ∪ L,C2 ∪ U ∈ DN ,
for all i ∈ ω and all j ∈ ω \ {0}.
Proof. By definition, D ∈ DN . So, based on Fig. 3, C1 = 3D ∩ ∼D ∈ DN .
Similarly, B1 = 3C1 ∩ ∼3D ∈ DN and C2 ∪ U = ∼34D ∈ DN , hence we
have A = 3B1 ∩ ∼3C1 ∈ DN and B3 = ∼(32(C2 ∪ U) ∪ 32D) ∈ DN .
From this, it follows that L0 = ∼(B3 ∪ 3(C2 ∪ U) ∪ 33D) ∈ DN , so we have
B2 ∪ L = (3(C2 ∪ U) ∪ L0) ∩ ∼(C2 ∪ U) ∈ DN . Similarly, we must have
L1 = 3L0 ∩ ∼(A ∪ L0) ∈ DN , which implies that U1 = 3L1 ∩ ∼3A ∈ DN .

It remains to establish that Li, Uj ∈ DN , for all i ∈ ω and all j ∈ ω \ {0};
we proceed by induction. Assume that Li, Ui ∈ DN , for some odd i ∈ ω.

ui ui+1 ui+2 ui+3

`i `i+1 `i+2 `i+3

a

ui ui+1 ui+2 ui+3

`i `i+1 `i+2 `i+3

a

Fig. 4. Graph drawings for Lemma 3.5.

Firstly, assume that i + 1 /∈ N . By Fig. 4, Li+1 = 3Ui ∩ ∼3Li ∈ DN ,
which implies that Ui+1 = 3Li+1 ∩ ∼(3A ∪ Ui) ∈ DN . This implies that
Li+2 = 3Ui+1 ∩ ∼3Li+1 ∈ DN , so Ui+2 = 3Li+2 ∩ ∼(3A ∪ Ui+1) ∈ DN .
Thus, Li+1, Li+2, Ui+1, Ui+2 ∈ DN if i+ 1 /∈ N .

Next, assume that i + 1 ∈ N . From Fig. 4, Li+1 = 3Ui ∩ ∼3Li ∈ DN ,
so we have Ui+1 ∪ Ui+2 = 3Li+1 ∩ ∼(3A ∪ Ui) ∈ DN . Using these results,
we find that we must have Li+2 ∪ Li+3 = 3(Ui+1 ∪ Ui+2) ∩ ∼3Li+1 ∈ DN .
From this, it follows that Ui+2 = (Ui+1 ∪ Ui+2) ∩ 3(Li+2 ∪ Li+3) ∈ DN ,
which implies that Ui+1 = (Ui+1 ∪ Ui+2) ∩ ∼Ui+2 ∈ DN . From these results,
X := 3(Li+2 ∪ Li+3) ∩ ∼(3A ∪ Ui+2) ∈ DN . Based on Fig 4, we must have
ui+3 ∈ X and a, `i+2, ui+2 /∈ X, hence `i+2 /∈ 3X and `i+3 ∈ 3X. Thus,
Li+2 = (Li+2∪Li+3)∩∼3X ∈ DN , so Li+1, Li+2, Ui+1, Ui+2 ∈ DN if i+1 ∈ N .

In every case, we have Li+1, Li+2, Ui+1, Ui+2 ∈ DN . Hence, by induction,
Ui, Lj ∈ DN , for all i ∈ ω and all j ∈ ω \ {0}, so we are done. 2

Corollary 3.6 Let N ⊆ E. Then the algebra DN is infinite.

Lemma 3.7 Let N ⊆ E. Then Cm(K2) ∈ IS(DN ).

Proof. From Lemma 3.5, it follows that X := B∪D∪L ∈ DN . Based on Fig.
1 and Fig. 4, the subalgebra of DN generated by X is isomorphic to Cm(K2),
hence Cm(K2) ∈ IS(DN ), as claimed. 2
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Based on Fig 4, if N ⊆ E, then every vertex other than d is joined to a by
a path of length of at most 2 in FN , so DN |= ∀x : x 6= 0 → 35x = 1. The
following Lemma is an easy consequence of this observation and  Loś’s Theorem.

Lemma 3.8 Let N ⊆ E. Then every member of PU(DN ) is simple.

Lemma 3.9 Let N ⊆ E, let F be an ultrafilter over a set I and let S be a
subalgebra of DI

N/F . If S |= ∀x : x 6= 0 → 3x = 1, then S ∼= Cm(K1) or
S ∼= Cm(K2).

Proof. Let S be the universe of S and define a map X̄ : I → DN by i 7→ X,
for each X ∈ DN . Suppose, for a contradiction, that there exist X,Y ∈ DI

N

with X/F, Y/F ∈ S \ {∅̄/F, W̄/F}, X/F 6= Y/F and X/F 6= ¬Y/F . Clearly,
we must have {i ∈ I | d ∈ X(i)} ∪ {i ∈ I | d ∈ ∼X(i)} = I ∈ F , which
implies that {i ∈ I | d ∈ X(i)} ∈ F or {i ∈ I | d ∈ ∼X(i)} ∈ F . Similarly,
{i ∈ I | d ∈ Y (i)} ∈ F or {i ∈ I | d ∈ ∼Y (i)} ∈ F . Without loss of generality,
we can assume that both {i ∈ I | d ∈ X(i)} ∈ F and {i ∈ I | d ∈ Y (i)} ∈ F ,
since we can interchange X with ¬X and Y with ¬Y (if necessary).

Clearly, ¬X/F 6= ∅̄/F and ¬Y/F 6= ∅̄/F , so 3¬X/F = W̄/F = 3¬Y/F ,
since S |= ∀x : x 6= 0 → 3x = 1. We have {i ∈ I | d ∈ X(i)} ∈ F and {i ∈ I |
d ∈ Y (i)} ∈ F , so {i ∈ I | d /∈ ∼X(i)} ∈ F and {i ∈ I | d /∈ ∼Y (i)} ∈ F . By
Fig. 3, {i ∈ I | c1 ∈ ∼X(i)} ∈ F and {i ∈ I | c1 ∈ ∼Y (i)} ∈ F . Thus, {i ∈ I |
c1, d /∈ X(i) ∩ ∼Y (i)} ∈ F and {i ∈ I | c1, d /∈ ∼X(i) ∩ Y (i)} ∈ F . By Fig. 3,
{i ∈ I | d /∈ 3(X ∧ ¬Y )(i)} ∈ F and {i ∈ I | d /∈ 3(¬X ∧ Y )(i)} ∈ F , hence
3(X/F∧¬Y/F ) 6= W̄/F and 3(¬X/F∧Y/F ) 6= W̄/F . Since X/F 6= Y/F and
X/F 6= ¬Y/F , it follows that X/F ∧¬Y/F 6= ∅̄/F or ¬X/F ∧Y/F 6= ∅/F , so
this contradicts the fact that S |= ∀x : x 6= 0 → 3x = 1. Thus, we must have
|S| 6 4. Since S |= ∀x : x 6= 0 → 3x = 1 and DN has no trivial subalgebras,
this implies that S ∼= Cm(K1) or S ∼= Cm(K2), as claimed. 2

Lemma 3.10 Let N ⊆ E, let γ be the natural closure operator of DN and
let X be a γ-closed element of DN with 3X 6= W and 32X = W . Then
3∼X 6= W .

Proof. Firstly, assume that a ∈ X. Based on Fig. 3, we have a, b3 ∈ 3X,
hence a, b3 /∈ ∼3X. So, by Lemma 1.5(i), b3 /∈ 3∼3X = ∼X, hence a, b3 ∈ X.
By Fig. 3, b3 /∈ 3∼X, which implies that 3∼X 6= W if a ∈ X.

Now, assume that a /∈ X. We claim that a ∈ 3X; suppose that a /∈ 3X.
By Fig. 3, we have b3 /∈ X, hence a, b3 /∈ X and a /∈ 3X. Thus, b3 /∈ 3X,
which contradicts the fact that 32X = W . It follows that a ∈ 3X, as claimed.
By Fig. 3, we must have b2 ∈ X or c2 ∈ X, as a /∈ X and 32X = W . Hence,
a, b2, c2 ∈ 3X, so by Lemma 1.5(i), we have c2 /∈ 32∼3X = 3∼X. From this,
it follows that 3∼X 6= W if a /∈ X, so 3∼X 6= W , as claimed. 2

Lemma 3.11 Let N ⊆ E, let F be an ultrafilter over a set I, let S be a
subalgebra of DI

N/F , let S be the universe of S, let X̄ : I → DI
N be defined by

i 7→ X, for each X ∈ DN , let γ be the natural closure operator of S and let
X ∈ DI

N with X/F ∈ S and X/F 6= ∅̄/F .

(i) If {i ∈ I | P ∩X(i) = ∅} ∈ F , then D̄/F ∈ S.
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(ii) If {i ∈ I | P ⊆ 3X(i)} ∈ F and 3X/F 6= W̄/F , then D̄ ∈ S.

(iii) If {i ∈ I | P ⊆ 3∼X(i)} ∈ F , 3X/F 6= W̄/F , 32X/F = W̄/F and X/F
is γ-closed, then D̄/F ∈ S.

Proof. Assume that {i ∈ I | P ∩X(i) = ∅} ∈ F . By Fig. 3, if Y ∈ DN \ {∅}
with Y ∩ P = ∅, then 32Y = ∼D, 33Y = ∼D or 34Y = ∼D. Thus, {i ∈ I |
D = ∼32X(i)} ∪ {i ∈ I | D = ∼33X(i)} ∪ {i ∈ I | D = ∼34X(i)} = I ∈ F ,
so we must have {i ∈ I | D = ∼32X(i)} ∈ F , {i ∈ I | D = ∼33X(i)} ∈ F
or {i ∈ I | D = ∼34X(i)} ∈ F . Clearly, this implies that ¬32X/F = D̄/F ,
¬33X/F = D̄/F or ¬34X/F = D̄/F , so (i) holds.

Now, to prove (ii), assume that we have {i ∈ I | P ⊆ 3X(i)} ∈ F and
3X/F 6= W̄/F . Then {i ∈ I | P ∩ ∼3X(i) = ∅} ∈ F , ¬3X/F 6= ∅̄/F and
¬3X/F ∈ S. By the previous result, D̄/F ∈ S, so (ii) holds.

To prove (iii), assume that {i ∈ I | P ⊆ 3∼X(i)} ∈ F , 3X/F 6= W̄/F ,
32X/F = W̄/F and X/F is γ-closed. From Lemma 3.10 and  Loś’s Theorem,
it follows that 3¬X/F 6= W̄/F . So, based on the previous result, D̄/F ∈ S.
Thus, the three required results hold. 2

Lemma 3.12 Let N ⊆ E, let F be an ultrafilter over a set I and let S be a
subalgebra of DI

N/F . If S |= ∃x : x 6= 0 & 3x 6= 1, then DN ∈ IS(S).

Proof. Let S be the universe of S, let γ be the natural closure operator of S
and define a map X̄ : I → DN by i 7→ X, for each X ∈ DN . Since D generates
DN and the natural diagonal map embeds DN into DI

N/F , it will be enough
to show that D̄/F ∈ S.

By Lemma 1.6, there is some X ∈ DI
N such that X/F ∈ S, 3X/F 6= W̄/F ,

32X/F = W̄/F and X/F is γ-closed, as S |= ∃x : x 6= 0 & 3x 6= 1 and
S |= ∀x : x 6= 0 → 35x = 1. If Y ⊆ W , we either have c2 ∈ Y or c2 ∈ ∼Y ,
so by Fig. 3, we must have P ⊆ 3Y or P ⊆ 3∼Y if Y ⊆ W . From this,
it follows that {i ∈ I | P ⊆ 3X(i)} ∪ {i ∈ I | P ⊆ 3∼X(i)} = I ∈ F , so
{i ∈ I | P ⊆ 3X(i)} ∈ F or {i ∈ I | P ⊆ 3∼X(i)} ∈ F . By Lemma 3.11,
D̄/F ∈ S and we are done. 2

Lemma 3.13 Let N ⊆ E. Then Var(DN ) is of height 3.

Proof. By Corollary 3.6 and Lemma 3.7, DN is infinite and Cm(K2) ∈ IS(DN ).
By Lemma 3.8, each element of PU(DN ) is simple. By Lemmas 3.9 and 3.12,
we must have B ∼= Cm(K1), B ∼= Cm(K2) or DN ∈ IS(B) if B ∈ ISPU(DN).
So, by Lemma 3.2, Var(DN ) has height 3, as claimed. 2

Now it remains to show that for distinct N,M ⊆ E, the varieties Var(DN )
and Var(DM ) are distinct.

Lemma 3.14 Let N ⊆ E and let X ∈ DN \ {∅} with 34
NX 6= W . Then

X = D or 34
NX = ∼D.

Proof. Based on Fig. 3, if a ∈ 3X or c2 ∈ X, then we must have 34X = W ,
hence X ⊆ U ∪ C2 ∪ D. By Fig. 3, 34D = W \ (C2 ∪ U) 6= W . Similarly,
34X = W if d ∈ X and X ∩ (C2 ∪ U) 6= ∅, and 34X = ∼D if X ⊆ C2 ∪ U .
Since 34X 6= W , we must have X = D or 34X = ∼D, as claimed. 2
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Lemma 3.15 Let M,N ⊆ E and let u : DM → DN be an embedding. Then
u(D) = D.

Proof. Suppose, for a contradiction, that u(D) 6= D. Since u is an embedding,
u(D) 6= ∅. Based on Fig. 3, 34

Nu(D) = u(34
MD) = u(W \ (C2 ∪ U)) 6= W ,

since u is an embedding. So, by Lemma 3.14, we must have 34
Nu(D) = ∼D.

By Lemma 3.5, we have U1 ∈ DM and (C1 ∪U) \U1 = (C1 ∪U)∩∼U1 ∈ DM .
Now,

u(U1) ∪ u((C2 ∪ U) \ U1) = u(C2 ∪ U) = u(∼34
MD) = ∼34

Nu(D) = D,

hence we must have u(U1) = D = u((C2 ∪ U) \ U), u(U1) = ∅ = u(∅) or
u((C2∪U)\U1) = ∅ = u(∅), which contradicts the fact that u is an embedding.
Thus, u(D) = D, as claimed. 2

Lemma 3.16 Let M,N ⊆ E with M 6= N . Then Var(DM ) 6= Var(DN ).

Proof. Suppose, for a contradiction, that we have Var(DM ) = Var(DN ). By
Lemmas 3.8 and 3.12, there are embeddings u : DM → DN and v : DN → DM .
As M 6= N , we have (M \N)∪ (N \M) 6= ∅. Let i := min((M \N)∪ (N \M)).
Without loss of generality, we can assume that i ∈M , since we can interchange
M with N (if necessary). From the proof of Lemma 3.5, there are unary terms
tA, tLi and tUi−1 with tDM

A (D) = A = tDN

A (D), tDM

Li
(D) = Li = tDN

Li
(D) and

tDM

Ui−1
(D) = Ui−1 = tDN

Ui−1
(D), since i is the minimum of (M \ N) ∪ (N \M).

Now, let t(x) be the unary term defined by

t(x) := 3tLi(x) ∧ ¬(tA(x) ∨ tLi(x) ∨ tUi−1(x)).

Based on Fig. 3 and Fig. 4, we have tDM (D) = Ui and tDN (D) = Ui ∪ Ui+1.
Using Lemma 3.14, we find that

v(Ui) ∪ v(Ui+1) = v(tDN (D)) = tDM (v(D)) = tDM (D) = Ui,

so we have v(Ui) = Ui = v(Ui+1), v(Ui) = ∅ = v(∅) or v(Ui+1) = ∅ = v(∅).
This contradicts the injectivity of v, so Var(DM ) 6= Var(DN ), as claimed. 2

4 Conclusion

We have constructed a continuum of subvarieties of B of height 3. Our main
result follows immediately.

Theorem 4.1 The class of normal axiomatic extensions of KTB of codimen-
sion 3 is of size continuum.

It will be of interest to see what our result implies about subquasivarieties
of B of small height, or, equivalently, about logics in CNExt(KTB) of small
codimension (see Remark 2.1). However, from Blanco, Campercholi and Vag-
gione [2] it follows that even the lattice of subquasivarieties of Var(Cm(K2))
is not a chain, so the lattice of subquasivarieties of Var(DN ) may be already
quite complex, in particular, it may be of height strictly greater than 3.
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36 (2007), pp. 183–193.

[17] Miyazaki, Y., A splitting logic in NExt(KTB), Studia Logica 85 (2007), pp. 381–394.

http://people.maths.ox.ac.uk/~hap/tancl07/tancl07-kowalski.pdf
https://users.cecs.anu.edu.au/~bdm/nauty/
https://users.cecs.anu.edu.au/~bdm/nauty/

	Introduction
	KTB-algebras

	The history of the problem
	Construction
	Conclusion
	References

