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Abstract

The classical cube of non-normal modal logics is considered, and an alternative neigh-
bourhood semantics is given in which worlds are equipped with sets of pairs of neigh-
bourhoods. The intuition is that the two neighbourhoods of a pair provide indepen-
dent positive and negative evidence (or support) for a formula. This bi-neighbourhood
semantics is significant in particular for logics without the monotonicity property. It
is shown that this semantics characterises the cube of non-normal modal logics and
that there is a mutual correspondence between models in the standard and in the
bi-neighbourhood semantics. On the basis of this alternative semantics, labelled se-
quent calculi are developed for all the logics of the classical cube. The calculi thus
obtained are fully modular and have good structural properties, first of all, syntactic
cut elimination. Moreover, they provide a decision procedure and an easy counter-
model extraction, both in the bi-neighbourhood and in the standard semantics.

Keywords: Non-normal modal logics, (bi)-neighbourhood semantics, labelled
sequent calculi.

1 Introduction

Non-normal modal logics are called in this way because they do not satisfy all
the axioms and rules of the minimal normal modal logic K. They have been
studied since the seminal work of C.I. Lewis, Scott, Lemmon, and Chellas (for
an introduction see [1] and [5]) and can be seen as generalisations of standard
modal logics. Non-normal modal logics have found an interest in several areas
such as epistemic and deontic reasoning, reasoning about games, and reasoning
about probabilistic notions such as ‘truth in most of the cases’. In all these
contexts the 2 modality is better understood as non-normal. For instance, an
epistemic interpretation of 2A as ‘the agent knows A’ for a non-omniscient
agent would reject the rule of monotonicity (RM), that A→ B implies 2A→
2B, and possibly the rule of necessitation, the latter meaning in this case that
the agent would know every logical validity. In deontic logic, where 2A is

1 This work was partially supported by the Project TICAMORE ANR-16-CE91-0002-01,
and by the Academy of Finland, research project no. 1308664.
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interpreted as ‘A is obligatory’, some paradoxes like the ‘gentle murder’ can be
avoided if 2 is non-normal. Furthermore, if we interpret 2A as ‘A is true in
most of the cases’ or ‘A is highly probable’, the modality 2 will not be likely
to satisfy axiom (C) (2A ∧ 2B) → 2(A ∧ B). Validity of this axiom would
also fail in a game-theoretical interpretation, where 2A is interpreted as the
agent’s availability of a winning strategy to bring about A.

Non-normal modal logics have been studied essentially from a semantical
point of view. The standard semantics (Chellas [1]) for these systems is defined
in terms of neighbourhood models: these are possible world models, where each
world w is equipped with a set of neighbourhoods N (w), each one of them
being a set of worlds/states. The loose intuition is that each neighbourhood
provides sufficient or relevant evidence to establish the truth of a formula of
type 2A. A formula 2A is forced by a world w if the truth-set of A belongs to
N (w). By imposing further closure conditions on N (w), various non-normal
modal logics can be obtained. The classical cube of non-normal modal logics is
determined by considering any combination of the following three conditions:
for any world w, (M) N (w) is closed under supersets, (C) it is closed under
intersection, (N) it contains the whole set of possible worlds.

The study of proof systems for non-normal modal logics does not have a
state of the art comparable with the one of proof systems for normal modal
logics, for which there exist well-understood proof methods of many kinds.

There are several desiderata on proof systems: 2 they should be standard,
that is, they should contain only a finite number of rules, each with a fixed
number of premisses; logical operators should be dealt with dual rules (for the
antecedent and the succedent) that introduce a single occurrence of a formula;
the rules should be analytic and allow for a syntactic proof of cut elimination;
the calculi should be modular, with stronger systems obtained simply by adding
rules to a basic system; finally, they should provide a decision procedure (pos-
sibly of optimal complexity) whenever the logic is decidable, and from a failed
proof it should be possible to extract directly a countermodel of the formula
the validity of which is being checked.

Cut-free sequent calculi for non-normal modal logics have been studied by
Lavendhomme and Lucas [9]; in their calculi, however, rules allow several for-
mulas as principal and modularity does not obtain; further, a decision pro-
cedure is given but it is rather complicated in the non-monotonic case. In-
drzejczak [6] has further developed the calculi by Lavendhomme and Lucas [9]
extending them with standard axioms of normal modal logics (the non-normal
counterpart of logics from K to S5). Gilbert and Maffezioli [3] investigate
labelled calculi using three modalities, on the basis of the translation of non-
normal modal logics into normal modal logics given by Gasquet and Herzig [2]
and Kracht and Wolter [8]. As a bi-product of the general methodology em-
ployed, their calculi are also fully modular (i.e., modular with no exceptions)

2 For general desiderata on proof systems see [7,15]; for modularity see [11], and for the
extraction of countermodels from failed proof search see [12].
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but computational issues are not discussed. Recently, Lellmann and Pimentel
[10] have proposed linear nested sequent calculi for non-normal modal logics;
their calculi are fully modular and allow for syntactic cut elimination, but it is
not obvious how to get countermodels and a decision procedure out of them.

In this work, we propose labelled sequent calculi for the basic non-normal
modal logics. Our calculi are based on bi-neighbourhood models, an alternative
semantics more general than the standard one. Differently from the standard
semantics, worlds in a bi-neighbourhood model are equipped with sets of pairs
of neighbourhoods rather than single neighbourhoods. The intuition is that
the two components of a pair provide independent positive and negative evi-
dence (or support) for a proposition. Standard models correspond exactly to
bi-neighbourhood models in which the two neighbourhoods of a pair are com-
plement of each other. The bi-neighbourhood semantics is significant mostly
for logics without the monotonicity property, as it collapses into the standard
one in the monotonic case. We show directly that this semantics characterises
non-normal modal logics, being sound and complete with respect to them.
Moreover, each bi-neighbourhood model gives rise (in an effective way) to a
standard model, providing thereby a mutual correspondence between models
of the two kinds.

The new semantics is the starting point for developing labelled sequent cal-
culi for non-normal modal logics. Our aim is to define calculi that satisfy all
the above desiderata. The calculi presented in this work are standard (in the
sense specified above) and are based on the same approach of Negri [13] of
importing the semantics into the syntax by making use of labels; however, they
differ significantly from those for non-monotonic systems. The main difference
is that the calculi presented here make use of pseudo-complement neighbour-
hoods (corresponding to pairs in the bi-neighbourhood semantics) instead of
the covering relation to express the inclusion of the truth-set of a formula in
a neighbourhood. The new semantic element has the effect that the calculi
presented here do not introduce relational formulas in the consequent of a se-
quent and thus avoid exponential branching in proof search. Departing from
the standard neighbourhood semantics gives, as a further bonus, calculi that
cover in a modular way the whole cube of non-normal modal logics.

We shall first present a version of the calculi with good proof-theoretical
properties, the most important being syntactic cut elimination, from which
syntactic completeness of the calculi follows. We then present a second version
of the calculi with optimised rules for closure under intersection. We show
that proof search in these calculi is always terminating, just by adopting a very
simple strategy (with no additional mechanism needed). We then prove seman-
tic completeness with respect to bi-neighbourhood models, whence also with
respect to the standard semantics by virtue of the correspondence mentioned
above. This means that from a failed proof search it is possible to extract
directly a countermodel both in the bi-neighbourhood semantics and in the
standard one. Since the models obtained in this way are finite, the semantic
completeness proof provides in itself also a constructive proof of the finite model
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property. We finally give a syntactic proof of the fact that bi-neighbourhood
semantics coincides with the standard semantics: if we force the two neigh-
bourhoods of each pairs to be complements of each other, we do not get more
provable formulas.

2 Non-normal modal logics and bi-neighbourhood
semantics

In this section, we present the modal logic E and its extensions. We also present
its standard semantics in terms of neighbourhood models and a more general se-
mantics in terms of bi-neighbourhood models. We show that bi-neighbourhood
semantics characterises logic E and its extensions and is equivalent to the stan-
dard neighbourhood semantics.

Let L be a propositional modal language based on countably many propo-
sitional variables, the Boolean connectives, and 2. We use A,B,C and p, q as
metavariables for arbitrary formulas and atoms of L. 3A is an abbreviation
for ¬2¬A. Logic E is obtained by adding to classical propositional logic the
rule of inference

RE
A↔ B

2A↔ 2B
and can be extended further by choosing any combination of axioms M, C and
N (below left), thus producing eight distinct logics. The resulting systems are
denoted by ES1...Sn, where Si ∈ {M,C,N} 3 (see the classical cube below on
the right). We write E∗ (EM∗, EC∗, EN∗) to indicate any extension of E
(EM, EC, EN) with some of these axioms and recall that the top extension
coincides with K.

M 2(A ∧B)→ 2A ∧2B

C 2A ∧2B → 2(A ∧B)

N 2>
E

EM EC EN

EMC EMN ECN

EMCN (K)

Definition 2.1 A standard neighbourhood model (just standard model in the
following) is a triple F = 〈W,N , V 〉, where W is a non-empty set, N is a func-
tion W −→ PP(W ) and V is a valuation function for propositional variables of
L. A model is said to be supplemented if for all α, β ⊆W , α ∈ N (w) and α ⊆ β
implies β ∈ N (w); it is closed under intersection if α ∈ N (w) and β ∈ N (w)
implies α ∩ β ∈ N (w); and it contains the unit if for all w ∈ W,W ∈ N (w).
The forcing relation M, w |=st A is defined in the usual way for atomic for-
mulas and Boolean connectives. For the modality we have M, w |=st 2A iff
[A]M ∈ N (w), where [A]M denotes the set {v | M, v |=st A} of the worlds v
that force A, also called the truth set of A.

3 In the literature, in the presence of axiom M the letter E is sometimes omitted from the
name of the systems, that are instead denoted by MS1...Sn, where Si ∈ {C,N}.
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As a consequence of the above definition, we obtain the following truth
condition for 3A: M, w |=st 3A iff [¬A]M /∈ N (w).

Theorem 2.2 (Chellas [1]) Logic E(M,C,N) is sound and complete with
respect to standard models (which in addition are, respectively, supplemented,
closed under intersection, or contain the unit).

We now introduce a new semantics where pairs of neighbourhood are used
to evaluate the truth of a modal formula.

Definition 2.3 A bi-neighbourhood model is a triple M = 〈W,N , V 〉, where
W is a non-empty set, V is a valuation function and N is a function that
assigns to each world w a subset of P(W )×P(W ) such that if (α, β) ∈ N (w),
then α ∩ β = ∅. Moreover, M is a N-model if for all w ∈ W , (W, ∅) ∈ N (w);
it is a C-model if (α1, β1), (α2, β2) ∈ N (w) implies (α1 ∩ α2, β1 ∪ β2) ∈ N (w);
and it is an M-model if for all w ∈W , (α, β) ∈ N (w) implies β = ∅.

The forcing relation M, w |=bi A is defined as in Definition 2.1 except for
the modality, for which the clause is as follows:

M, w |=bi 2A iff for some (α, β) ∈ N (w) and all v ∈W ,
v ∈ α implies M, v |=bi A, and v ∈ β implies M, v 6|=bi A.

Observe that in case the considered model does not satisfy condition M
(i.e. in the non-monotonic case), if α and β are complementary, this definition
becomes equivalent to the standard one. From Definition 2.3 we obtain the
following truth condition for 3A: M, w |=bi 3A iff for all (α, β) ∈ N (w), there
is v ∈ α such that M, v |=bi A, or there is u ∈ β such that M, u 6|=bi A.
Notice also that bi-neghbourhood models satisfying condition M collapse into
standard models, where 2 coincides with the modality 〈 ] considered by Pacuit
[14].

Theorem 2.4 Logic E (M,C,N) is sound with respect to bi-neighbourhood
(M,C,N-)models.

Proof. It can be easily shown that each axiom is valid in the respective class
of models and that all the rules preserve validity. 2

Even if completeness of all logics E∗ with respect to bi-neighbourhood mod-
els follows from Theorem 2.2 and the fact that standard models are particular
cases of bi-neighbourhood models, it can be interesting to prove it directly by
the canonical model construction. In the proof we do not consider the case of
M as we saw it is standard. First of all, for any logic L based on the language
L and for any set X of formulas of L, we say that X is L-consistent if X 6`L ⊥,
and that it is L-maximal consistent if it is L-consistent and for any formula
A ∈ L such that A 6∈ X, X ∪ {A} is not L-consistent. We denote by MaxL
the class of all L-maximal consistent sets of formulas of L, and for any formula
A we denote by ↑A the set {Y ∈ MaxL | A ∈ Y }. Before defining canonical
models, we recall some basic properties of L-maximal consistent sets.

Lemma 2.5 (a) Any L-consistent set of formulas Γ can be extended to an L-
maximal consistent set. (b) If Γ 0L A, there is X in MaxL such that Γ ⊆ X
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and X /∈↑A. (c) If 0L B → A, there is X in MaxL such that X ∈↑B and
X /∈↑A.

Lemma 2.6 Let X be an L-maximal consistent set. The usual properties of
maximal consistent sets hold, in particular: (a) If `L A, then A ∈ X; (b) if
Y `L A and Y ⊆ X, then A ∈ X; (c) if `L A↔ B and 2A ∈ X, then 2B ∈ X;
(d) ↑(A ∧B) =↑A∩ ↑B; and (e) ↑(A ∨B) =↑A∪ ↑B.

Lemma 2.7 Let the canonical model Mc = 〈W c,N c, V c〉 for L be defined as
follows: W c = MaxL; for any p ∈ L, V c(p) = {X ∈ W c | p ∈ X}; for all
X ∈W ,

N c(X) = {(↑A, ↑¬A)|2A ∈ X}.
Then for any formula B ∈ L we have Mc, X |= B iff B ∈ X. Moreover, (N)
if L contains axiom N, then Mc is an N-model, and (C) if L contains axiom
C, then Mc is a C-model.

Proof. By induction on B. If B is p the claim holds by definition of V c. If
B is ⊥, we have ⊥ /∈ X for every X, because X is consistent. If B is C ◦D,
the proof is immediate by applying the inductive hypothesis and properties
of maximal consistent sets. If B is 2C: (⇒) Assume Mc, X |= 2C. Then
for some (α, β) ∈ N c(X) and all Y ∈ W c, Y ∈ α implies Mc, Y |= C and
Y ∈ β impliesMc, Y 6|= C. By definition of N c, there is a formula D such that
α =↑D, β =↑¬D and 2D ∈ X. Since by inductive hypothesis [C]Mc =↑C, it
holds that for all Z ∈W c, Z ∈↑D implies Z ∈↑C and Z ∈↑C implies Z ∈↑D (if
Mc, Z |= C, then Z /∈↑¬D, then Z ∈↑D); that is ↑D =↑C. By the properties
of maximal consistent sets, `L D ↔ C. Since 2D ∈ X, by Lemma 2.6 we have
2C ∈ X. (⇐) Assume 2C ∈ X. By definition, (↑C, ↑¬C) ∈ N c(X). Since,
by inductive hypothesis, ↑C = [C]Mc , we have that for all Y ∈ W c, Y ∈↑C
implies Mc, Y |= C and Y ∈↑¬C implies Mc, Y 6|= C (because Y ∈↑¬C iff
Y 6∈↑C). Thus Mc, X |= 2C.

(N) Since `L 2>, for all X ∈ W c we have 2> ∈ X. Thus by definition,
(↑>, ↑¬>) ∈ N c(X), and by Lemma 2.6, ([>]Mc , [¬>]Mc) = (W c, ∅) ∈ N c(X).

(C) Assume (α1, β1), (α2, β2) ∈ N c(X). Then, by definition, for some
C,D ∈ L, α1 =↑C, β1 =↑¬C, α2 =↑D, β2 =↑¬D and 2C,2D ∈ X. Thus by
the properties of maximal consistent sets we have 2C ∧2D ∈ X and, since X
contains axiom C, also 2(C ∧D) ∈ X. Then (↑(C ∧D), ↑¬(C ∧D)) ∈ N c(X),
where ↑(C ∧D) = α1 ∩ α2 and ↑¬(C ∧D) = β1 ∪ β2. 2

Theorem 2.8 (Completeness of E∗) A formula A is a theorem of E∗ if and
only if is valid in the corresponding class of bi-neighbourhood models.

We now show that from any bi-neighbourhood model we can build an equiv-
alent standard model. As a matter of fact, we can relativise the construction
and the equivalence to an arbitrary set of formulas S provided that it is closed
under subformulas. In this way we have an effective procedure to transform a
finite bi-neighbourhood model satisfying a given formula into a standard one
satisfying the same formula. Because of the obvious equivalence of the two
semantics in the monotonic case, the latter is not considered in the lemma.
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Lemma 2.9 Let M = 〈W,N , V 〉 be a bi-neighbourhood model and S be a
set of formulas of L closed under subformulas. We define the standard model
MS = 〈W,NS , V 〉 with the same W and V and by taking, for all w ∈W ,

NS(w) = {[C]M | C ∈ S and M, w |= 2C}.
Then for any formula A ∈ S and any world w ∈W ,MS , w |= A iffM, w |= A.
Moreover, (N) if > ∈ S and M is a N-model, then MS contains the unit; and
(C) if S is closed under conjunction and M is a C-model, then MS is closed
under intersection.

Proof. By induction on the complexity of any formula B it can be easily shown
that [B]MS = [B]M. Moreover it can be proved that (N)MS contains the unit
wheneverM is a N-model and > ∈ S and (C)MS is closed under intersection
whenever M is a C-model and S is closed under conjunction. 2

Theorem 2.10 A formula A is valid in bi-neighbourhood models if and only if
it is valid in the standard models satisfying the corresponding model conditions
(N, C and M).

Proof. From right to left, the claim follows from Lemma 2.9. From left to
right, observe that given a standard model Mst, we obtain an equivalent bi-
neighbourhood model Mbi by taking, for all w ∈ W , Nbi(w) = {(α,W \ α) |
α ∈ Nst(w)}. Moreover, Mbi is a N-model if Mst contains the unit, and Mbi

is a C-model if Mst is closed under intersection. 2

3 The calculi LSE∗

In this section, we define our labelled calculi LSE∗. We first present their
language and rules, then prove soundness with respect to bi-neighbourhood
semantics and syntactic completeness.

Let WL = {x, y, z, ...} and NL = {a, b, c, ...} be two infinite sets, respectively
of world labels and of neighbourhood labels. Positive neighbourhood terms (or
just terms) are finite sets of neighbourhood labels, and are written [a1 . . . an].
If t is a positive term, then t is a negative term. The term τ and its negative
counterpart τ are neighbourhood constants. If a (positive or negative) term
contains exactly one label or it is τ or τ , then it is atomic, otherwise it is
complex.

Intuitively, a positive complex term represents the intersection of its con-
stituents, whereas a negative complex term represents the union of the negative
counterparts of its constituents. Moreover, t and t are the two members of a
pair of neighbourhoods in bi-neighbourhood models. Observe that the opera-
tion of overlining a term cannot be iterated: it can be applied only once for
turning a positive term into a negative one. Two operations over terms are
defined as follows: (a) Composition of positive terms:

[a1 . . . an][b] =

{
[a1 . . . an] if b = ai for some i, 1 ≤ i ≤ n;
[a1 . . . anb] otherwise.

[a1 . . . an][b1 . . . bm] = (...([a1 . . . an][b1])...[bm−1])[bm]

(b) Substitution of a positive term for a neighbourhood label inside a term:
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[a](t/b) =

{
t if b = a
[a] if b 6= a

[a1 . . . an](t/b) = [a1](t/b)...[an](t/b) s(t/b) = s(t/b)

Observe that these operations do not introduce multiple occurrences of the
same label, thus their results are still neighbourhood terms. We write Γ(t/a)
to indicate that the substitution applies to all formulas in Γ. As immediate
consequences of the definition we have: τ(t/a) = τ and τ(t/a) = τ , (sr)(t/a) =
s(t/a)r(t/a), and sr(t/a) = s(t/a)r(t/a).

Definition 3.1 The formulas of Lls are of the following kinds:

φ ::= x : A | x : t | x : t | t : A | t : A | t : x.

The semantic interpretation of formulas of Lls is given in Definition 3.3.
Intuitively, x : A means that x forces A, x : t (resp. x : t) means that x is a
world in neighbourhood t (resp. t), t : A (resp. t : A) means that every world
in t (resp. some world in t) forces A, and t : x means that the pair (t, t) is a
bi-neighbourhood of x.

We have chosen a polymorphic notation, in which the colon has a meaning
that depends on the type of its arguments, because of its compactness. As we
shall see the interpretation of a formula φ is uniquely determined.

Sequents are defined as usual as pairs Γ⇒ ∆ of finite multisets of formulas,
however they must satisfy some restrictions in order to assure cut admissibility.

Definition 3.2 A sequent is a pair Γ⇒ ∆, where Γ and ∆ are finite multisets
of formulas of Lls, that respect the following conditions: (1) ∆ contains only
formulas of the kinds x : A, t : A and t : A (whereas Γ may contain any formula
of Lls); (2) If Γ is non-empty, then all world labels and all neighbourhood
labels occurring in ∆ occur also in Γ. 4 (3) If Γ is empty, then ∆ contains only
formulas of the kind x : A, and all these formulas are labelled by the same
world label x. (4) If x : t is in Γ, then there is a world label y such that t : y is
in Γ.

The calculi LSE∗ are defined by the rules in Figure 1. Observe that, in anal-
ogy with the calculi based on standard possible world semantics, the left-right
rules are meaning conferring and directly derive from the semantic explanation
of logical constants in terms of bi-neighbourhood semantics, whereas the rules
that manipulate only labels provide modular extensions of the basic systems
to yield all the systems of the modal cube.

In Figure 2, the derivations of rule RE and axioms M, N and C in the
respective calculi will be shown (for RE we assume sequents y : A ⇒ y : B
and y : B ⇒ y : A derivable for any label y). Observe that considering
rule applications backwards, the restrictions on sequents of Definition 3.2 are
necessarily satisfied: If the conclusion of an instance of a rule satisfies conditions
(1)-(4), then its premisses also satisfy (1)-(4). On the other hand, if we consider
forward applications of the rules, these must be obviously restricted in such

4 A neighbourhood label a occurs in (or belongs to) a labelled formula φ (set of formulas,
sequent) if there is a (positive or negative) term containing a in φ.
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Initial sequents: x : p,Γ ⇒ ∆, x : p x : ⊥,Γ ⇒ ∆ Γ ⇒ ∆, x : >
Propositional rules: As for G3K.

x : t, x : A, t : A,Γ ⇒ ∆
l∀

x : t, t : A,Γ ⇒ ∆

x : t,Γ ⇒ ∆, x : A
r∀

Γ ⇒ ∆, t : A

x : t, x : A,Γ ⇒ ∆
l∃

t : A,Γ ⇒ ∆

x : t,Γ ⇒ ∆, x : A, t : A
r∃

x : t,Γ ⇒ ∆, t : A

[a] : x, [a] : A,Γ ⇒ ∆, [a] : A
l2

x : 2A,Γ ⇒ ∆

t : x,Γ ⇒ ∆, x : 2A, t : A t : x, t : A,Γ ⇒ ∆, x : 2A
r2

t : x,Γ ⇒ ∆, x : 2A

M
t : x, y : t,Γ ⇒ ∆

τ : x,Γ ⇒ ∆
Nτ

Γ ⇒ ∆
Nτ

x : τ ,Γ ⇒ ∆

ts : x, t : x, s : x,Γ ⇒ ∆
C

t : x, s : x,Γ ⇒ ∆

x : t, x : s, x : ts,Γ ⇒ ∆
dec

x : ts,Γ ⇒ ∆

x : t, x : ts,Γ ⇒ ∆ x : s, x : ts,Γ ⇒ ∆
dec

x : ts,Γ ⇒ ∆

Application conditions:
x is fresh in r∀ and l∃, a is fresh in l2, and x occurs in the conclusion of Nτ .

Fig. 1. The calculi LSE∗.

a way that they satisfy (1)-(4). Notice also that if rule M is added to the
basic calculus, our rules l2 and r2 become interderivable with the rules for
monotonic 2 given in [13]; the latter rules, rewritten with the present notation,
are as follows:

[a] : x, [a] : A,Γ ⇒ ∆
l2m (a fresh)

x : 2A,Γ ⇒ ∆

t : x,Γ ⇒ ∆, x : 2A, t : A
r2m

t : x,Γ ⇒ ∆, x : 2A

It can be shown that these calculi are sound with respect to bi-
neighbourhood semantics. For this purpose, we need to introduce the notion
of realisation.

Definition 3.3 Given a modelM = 〈W,N , V 〉, a realisation is a pair of func-
tions (ρ, σ), where ρ : WL −→W , and σ : NT −→ P(W ) such that σ(τ) = W ,
σ(t) ∩ σ(t) = ∅, σ(ts) = σ(t) ∩ σ(s) and σ(ts) = σ(t) ∪ σ(s). The relation
M |=ρ,σ φ is defined by cases as follows:
M |=ρ,σ x : t iff ρ(x) ∈ σ(t), and M |=ρ,σ x : t iff ρ(x) ∈ σ(t);
M |=ρ,σ x : A iff M, ρ(x) |= A;
M |=ρ,σ t : A iff for all w ∈ σ(t), M, w |= A;
M |=ρ,σ t : A iff there is a w ∈ σ(t) such that M, w |= A;
M |=ρ,σ t : x iff (σ(t), σ(t)) ∈ N (ρ(x)).

Then given a sequent Γ ⇒ ∆ we stipulate that M |=ρ,σ Γ ⇒ ∆ iff whenever
M |=ρ,σ φ for all formulas φ in Γ we also have M |=ρ,σ ψ for a formula ψ
in ∆. Moreover, Γ ⇒ ∆ is valid in M iff for all realisations (ρ, σ) we have
M |=ρ,σ Γ ⇒ ∆, and it is valid in bi-neighbourhood (N,C,M)-models iff it is



168 Non-Normal Modal Logics: Bi-Neighbourhood Semantics and Its Labelled Calculi

(RE)

y : A, y : [a], [a] : x, [a] : A⇒ x : 2B, [a] : A, y : B
l∀

y : [a], [a] : x, [a] : A⇒ x : 2B, [a] : A, y : B
r∀

[a] : x, [a] : A⇒ x : 2B, [a] : A, [a] : B
r2

[a] : x, [a] : A⇒ x : 2B, [a] : A
l2

x : 2A⇒ x : 2B

y : [a], y : B, [a] : x, [a] : A⇒ x : 2B, [a] : A, y : A
r∃

y : [a], y : B, [a] : x, [a] : A⇒ x : 2B, [a] : A
l∃

[a] : B, [a] : x, [a] : A⇒ x : 2B, [a] : A

(M)
..., y : A, y : B, y : [a], [a] : A ∧B ⇒ y : A, ...

∧l
..., y : A ∧B, y : [a], [a] : A ∧B ⇒ y : A, ...

l∀
..., y : [a], [a] : A ∧B ⇒ y : A, ...

r∀
..., [a] : A ∧B ⇒ [a] : A, ...

M
..., y : [a], y : A, [a] : x⇒ ...

l∃

..., [a] : A, [a] : x⇒ ...
r2

[a] : x, [a] : A ∧B ⇒ x : 2A, [a] : A ∧B
l2

x : 2(A ∧B)⇒ x : 2A

(N) τ : x, y : τ ⇒ x : 2>, y : >
r∀

τ : x⇒ x : 2>, τ : >

Nτ
τ : x, y : τ , y : > ⇒ x : 2>

l∃
τ : x, τ : > ⇒ x : 2>

r2
τ : x⇒ x : 2>

Nτ⇒ x : 2>

(C) ..., y : [a], y : A⇒ [a] : A, y : A...
r∃

..., y : [a], y : A⇒ [a] : A...

..., y : [b], y : B,⇒ [b] : B, y : B, ...
r∃

..., y : [b], y : B,⇒ [b] : B, ...
dec

..., y : [a, b], y : A, y : B ⇒ [a] : A, [b] : B, ...
∧l

..., y : [a, b], y : A ∧ B ⇒ [a] : A, [b] : B, ...
l∃

..., [a, b] : A ∧ B ⇒ [a] : A, [b] : B, ...
r2

[a, b] : x, [a] : x, [b] : x, [a] : A, [b] : B ⇒ x : 2(A ∧ B), [a] : A, [b] : B
C

[a] : x, [b] : x, [a] : A, [b] : B ⇒ x : 2(A ∧ B), [a] : A, [b] : B
l2(2)

x : 2A, x : 2B ⇒ x : 2(A ∧ B)

branch left
to the reader

Fig. 2. Derivation of rule RE and axioms M, N and C in the respective calculi.

valid in every model M of the corresponding class.

By an easy induction on derivations we can prove the soundness of the calculi.

Theorem 3.4 If a sequent Γ ⇒ ∆ is derivable in LSE(N,C,M), then it is
valid in the class of all bi-neighbourhood (N,C,M-)models.

Observe that all rules are also sound in standard models in which t is in-
terpreted as the real complement of t, with the exception of rule M which is
incompatible with such an interpretation. In what follows, we prove the main
structural properties of the calculus, most importantly admissibility of cut,
from which we obtain the syntactic completeness of the calculus.

Proposition 3.5 (a) Substitution of world labels and (b) substitution of pos-
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itive terms for neighbourhood labels are height-preserving admissible (hp-
admissible) in LSE∗. Moreover, (c) the rules of left and right weakening are
hp-admissible in LSE∗; (d) all rules of LSE∗ are hp-invertible; and (e) the
rules of left and right contraction are hp-admissible in LSE∗.

We aim to prove admissibility of the following cut rule:

Γ⇒ ∆, φ φ,Γ⇒ ∆
cut

Γ⇒ ∆
where φ is any formula of Lls that can occur on both sides of a sequent. Observe
that any application of cut respects the restrictions on sequents of Definition
3.2. In order to prove admissibility of cut we need to define the weight of a
labelled formula. Then by admissibility of cut it is easy to prove completeness
of LSE∗.

Definition 3.6 The weight w(φ) of a formula φ of the form x : A, t : A or
t : A is the pair 〈w(f(φ)), w(l(φ))〉, where f(φ) and l(φ) are, respectively, the L
formula A and the world label or neighbourhood term occurring in φ; w(x) = 0
and w(t) = w(t) = card(t), where card(t) is the number of neighbourhood
labels occurring in t; w(p) = 1, w(A◦B) = w(A)+w(B)+1, w(2A) = w(A)+1.
We consider weights of formulas lexicographically ordered.

Theorem 3.7 Cut is admissible in LSE∗.

Proof. By double induction, with primary induction on the weight of the cut
formula and subinduction on the cut height. Observe that, because of Definition
3.2, cut formulas can be only of the kinds x : A, t : A and t : A. We only show
some significant cases. (i) The last rule applied in the derivation of the left
premiss of cut is Nτ . The derivation on the left is converted into the one on
the right (in this and in the other cases we implicitly use hp-admissibility of
structural rules). Observe that the restrictions on sequents guarantee that in
the right derivation the label condition on the application of Nτ is respected,
i.e. it is not the case that φ contains the only occurrence of x.

τ : x,Γ⇒ ∆, φ
Nτ

Γ⇒ ∆, φ φ,Γ⇒ ∆
cut

Γ⇒ ∆

τ : x,Γ⇒ ∆, φ

φ,Γ⇒ ∆
wk

τ : x, φ,Γ⇒ ∆
cut

τ : x,Γ⇒ ∆
Nτ

Γ⇒ ∆

(ii) The cut formula is x : 2A, principal in the last rule of the derivation of
both premisses of cut:

t : x,Γ⇒ ∆, x : 2A, t : A

t : x, t : A,Γ⇒ ∆, x : 2A
r2

t : x,Γ⇒ ∆, x : 2A

D
[a] : x, [a] : A, t : x,Γ⇒ ∆, [a] : A

l2
x : 2A, t : x,Γ⇒ ∆

cut
t : x,Γ⇒ ∆

with a fresh in the application of l2. The derivation is converted into the
following, with four applications of cut, each one having smaller height or a cut
formula of smaller weight:
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t : x, x : 2A,Γ⇒ ∆
wk

t : x, t : A, x : 2A,Γ⇒ ∆
D(t/a)

t : x, t : A, t : x,Γ⇒ ∆, t : A
ctr

t : x, t : A,Γ⇒ ∆, t : A
cut

t : x,Γ⇒ ∆, t : A

t : x, t : A,Γ⇒ ∆, x : 2A
cut

t : x, t : A,Γ⇒ ∆
cut

t : x,Γ⇒ ∆

t : x,Γ⇒ ∆, x : 2A, t : A

t : x, x : 2A,Γ⇒ ∆
wk

t : x, x : 2A,Γ⇒ ∆, t : A
cut

t : x,Γ⇒ ∆, t : A
wk

t : x,Γ⇒ ∆, t : A, t : A

2

Theorem 3.8 The calculus LSE∗ is complete with respect to the logic E∗.

Proof. Straightforward by showing that any instance of the axioms and all
the rules of E∗ are derivable in LSE∗ (cf. Figure 2), using cut when needed.2

4 The calculi TLSE∗
In this section, we present the calculi TLSE∗ (where T stays for terms) which
are refinements of the calculi LSE∗ for the cases in which complex terms are
present. We show that these calculi are terminating and thereby provide a
decision procedure for the respective logics, and we prove semantic complete-
ness of the calculi with respect to bi-neighbourhood semantics. By simulating
derivations in LSE∗, we also show that these calculi are syntactically complete,
although, as explained below, a direct proof of cut elimination cannot be given,
what justifies a separate presentation of the two calculi.

Observe that in LSE∗ it may happen that if the starting sequent contains
n atomic terms [a1], ..., [an], a derivation branch - by application of rule C and
repeated applications of dec - may take O(2n) steps to generate a complex
term t containing an arbitrary subset of a1, ..., an. To prevent this situation we
reformulate the rules for complex terms as follows:

Simplified rules for C:
[a1] : x, ..., [an] : x, [a1 . . . an] : x,Γ ⇒ ∆

CT
[a1] : x, ..., [an] : x,Γ ⇒ ∆

x : [a1], ..., x : [an],Γ ⇒ ∆
decT

x : [a1 . . . an],Γ ⇒ ∆

x : [a1],Γ ⇒ ∆ ... x : [an],Γ ⇒ ∆
decT

x : [a1 . . . an],Γ ⇒ ∆

Since these rules are easily derivable in LSE∗, it turns out that TLSE∗ is
sound. The rules for decomposition of terms are modified as follows: a complex
term can be decomposed only into its atomic components and is not copied into
the premiss; moreover by the simplified rule for C complex terms can be formed
only by joining atomic terms. However, the calculi with the restricted rules are
complete only with respect to sequents of a special form, as described in the
next definition.

Definition 4.1 A sequent Γ⇒ ∆ of Lls is proper if it satisfies all the following
additional conditions: (1) If t : A is in Γ, then t is atomic and different from
τ ; (2) t : A is in Γ if and only if t : A is in ∆; (3) If [a] occurs in Γ⇒ ∆, then
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there is exactly one formula A such that [a] : A is in Γ; (4) If [a1 . . . an] : x is
in Γ, then [a1] : x, ..., [an] : x are in Γ.

It follows from Definition 4.1 that if a formula t : A occurs in the right-hand
side of a proper sequent Γ⇒ ∆, then t is atomic and different from τ , and t : A
is the only formula of this kind labelled by t occurring in ∆. Trivially, since
a sequent of the form ⇒ x0 : A is proper, restricting consideration to proper
sequents is sufficient to prove the validity of any formula of E∗.

It can be shown that the calculi TLSE∗ are syntactically complete as they
can simulate LSE∗ derivations restricted to proper sequents. As a preliminary
condition, observe that any sequent occurring in a derivation of a proper se-
quent in LSE∗ or TLSE∗ is proper, since whenever the conclusion of a rule
of LSE∗ or TLSE∗ is proper its premisses are also proper. The need of such
an indirect proof is due to the fact that proper sequents are not preserved by
substitution of neighbourhood terms, as it is needed for a direct proof of cut
elimination. Although we do not have a syntactic proof of cut admissibility,
we have a semantic proof of it: by the completeness of the calculi, the cut rule
turns out to be admissible in each system.

By the restrictions of Definition 4.1 we obtain the following property, that
will be needed in the proof of Theorem 4.11.

Proposition 4.2 Every proper sequent of the form x : [a], x : [a],Γ ⇒ ∆ is
derivable in TLSE∗.

Proof. Since x : [a], x : [a],Γ ⇒ ∆ is proper, by definition there is a formula
A such that [a] : A is in Γ and [a] : A is in ∆. Then the sequent has the form
x : [a], x : [a], [a] : A,Γ′ ⇒ ∆′, [a] : A and is derivable as follows:

x : [a], x : [a], [a] : A, x : A,Γ′ ⇒ ∆′, [a] : A, x : A
l∀

x : [a], x : [a], [a] : A,Γ′ ⇒ ∆′, [a] : A, x : A
r∃

x : [a], x : [a], [a] : A,Γ′ ⇒ ∆′, [a] : A
2

The adequacy of rules CT, decT and decT is proved by the following propo-
sition.

Proposition 4.3 (a) Rules decT and decT are invertible in TLSE∗ with respect
to derivations of proper sequents. (b) Contraction is hp-admissible in TLSE∗.

Theorem 4.4 Any proper sequent derivable in LSE∗ is derivable also in
TLSE∗, whence the calculi TLSE∗ are complete for the corresponding logic.

Proof. We just consider the most significant cases. If the last rule applied
is C, then S has the form t : x, s : x,Γ ⇒ ∆ and it was derived from the
proper sequent ts : x, t : x, s : x,Γ ⇒ ∆, that by inductive hypothesis is
derivable in TLSE∗. Let t and s be the terms [a1 . . . an] and [b1 . . . bm]. Then
ts is [a1 . . . anb1 . . . bm] (without possible repetitions). By definition of proper
sequent, Γ contains [ai] : x and [bj ] : x for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then we
can apply CT and obtain t : x, s : x,Γ⇒ ∆.
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If the last rule applied is dec, then S has the form x : ts,Γ ⇒ ∆ and
it was derived from the proper sequents x : t, x : ts,Γ ⇒ ∆ and x : s, x :
ts,Γ ⇒ ∆, that by inductive hypothesis are derivable in TLSE∗. Let t and s
be the terms [a1 . . . an] and [b1 . . . bm]. Then ts is [a1 . . . anb1 . . . bm] (without
possible repetitions). Consider the first premiss, that is x : [a1 . . . an], x :
[a1 . . . anb1 . . . bm],Γ ⇒ ∆. By invertibility of decT in TLSE∗, x : [ai], x :
[a1 . . . anb1 . . . bm],Γ ⇒ ∆ is derivable for all 1 ≤ i ≤ n. Again by invertibility
of decT, x : [ai], x : [ak],Γ⇒ ∆ and x : [ai], x : [bl],Γ⇒ ∆ are derivable for all
1 ≤ k ≤ n, 1 ≤ l ≤ m. By applying the same procedure to the second premiss,
we obtain that sequents x : [bj ], x : [ak],Γ⇒ ∆ and x : [bj ], x : [bl],Γ⇒ ∆ are

derivable for all 1 ≤ k ≤ n, 1 ≤ j, l ≤ m. Now take all sequents x : [ai], x :
[ak],Γ⇒ ∆ and x : [bj ], x : [bl],Γ⇒ ∆ where i = k and j = l. By contraction

we obtain x : [ai],Γ ⇒ ∆ and x : [bj ],Γ ⇒ ∆. Then by an application of decT
with all these sequents as premisses we derive x : ts,Γ⇒ ∆. 2

We now show that by adopting a simple strategy, proof search in TLSE∗

always terminates in a finite number of steps, thereby providing a decision
procedure for the corresponding logic. This is basically proved by showing
that the set of labelled formulas which can occur in any sequent in any deriva-
tion branch is finite. In order to define the strategy, we introduce saturation
conditions associated to the rules and the notion of saturated branch.

Definition 4.5 Let B = {Γi ⇒ ∆i} be a (finite or infinite) branch in a proof
search in TLSE∗ for Γ ⇒ ∆. We define Γ∗ =

⋃
Γi and ∆∗ =

⋃
∆i. The

saturation conditions associated to each rule of TLSE∗ are as follows: (Init)
for all i, there is no x : p in Γi ∩∆i; x : ⊥ is not in Γi and x : > is not in ∆i.
Standard for propositional rules (omitted). (l∀) If t : A and x : t are in Γ∗,
then x : A is in Γ∗. (r∀) If t : A is in ∆∗, then for a label x, x : t is in Γ∗ and
x : A is in ∆∗. (l∃) If t : A is in Γ∗, then for a label x, x : t and x : A are in
Γ∗. (r∃) If t : A is in ∆∗ and x : t is in Γ∗, then x : A is in ∆∗. (l2) If x : 2A
is in Γ∗, then for a label a, [a] : x and [a] : A are in Γ∗ and [a] : A is in ∆∗.
(r2) If x : 2A is in ∆∗ and t : x is in Γ, then either t : A is in ∆∗ or t : A is
in Γ∗. (Nτ) For every world label x occurring in Γ∗ ∪∆∗, τ : x is in Γ∗. (Nτ)
x : τ is not in Γ∗. (M) t : x and y : t are not both in Γ∗. (CT) If [a1] : x, ...,
[an] : x are in Γ∗, then [a1 . . . an] : x is in Γ∗. (decT) If x : [a1 . . . an] is in Γ∗,
then x : [a1], ..., x : [an] are in Γ∗. (decT) If x : [a1 . . . an] is in Γ∗, then x : [a1]
or, ..., or x : [an] is in Γ∗.

We say that B is saturated with respect to an application of a rule if the
corresponding condition holds, and it is saturated with respect to TLSE∗ if it
is saturated with respect to all possible applications of any rule of TLSE∗.

The strategy for constructing a root-first proof search tree in TLSE∗ of the
sequent ⇒ x0 : A obeys the following conditions: (i) No rule can be applied to
an initial sequent; (ii) A specific application of a rule R to a formula φ (or to
a pair of formulas φ and ψ) in a sequent Γi ⇒ ∆i is not allowed if the branch
from ⇒ x0 : A to Γi ⇒ ∆i already fulfills the saturation condition for that
application of R; (iii) If rules for N are present, as first step apply Nτ to x0.



Dalmonte, Olivetti, and Negri 173

We now show that for each sequent ⇒ x0 : A this strategy produces either a
proof of it or a finite tree in which all open branches are saturated.

Definition 4.6 Let B be a branch of a proof search in TLSE∗ for ⇒ x0 : A,
t a neighbourhood term and x, y world labels occurring in B, and let k(x) =
min{i ∈ N | x is in Γi}. The relations →1⊆ WL × NT, →2⊆ NT ×WL, and
→w⊆WL×WL are defined as follows:
→1) (i) x→1 t if t 6= τ and t : x is in Γ∗; (ii) x0 →1 τ ;

(iii) y 6= x0 implies y 6→1 τ ; and (iv) x→1 t if x→1 t.
→2) t→2 x if for a i ∈ N, k(x) = i and x : t is in Γi (for t positive or

negative).
→w) x→w y if for some (positive or negative) term t, x→1 t and t→2 y.

Lemma 4.7 Given a branch B in a proof search tree for ⇒ x0 : A built in
accordance with the strategy we have that (a) the graph Tw determined by x0
and the relation →w is a tree with root x0, and (b) all the world labels occurring
in B are nodes of Tw.

Lemma 4.8 Let for any world label x and any (positive or negative) term t,
md(x) = max{md(A) | x : A is in Γ∗ ∪∆∗} and md(t) = max{md(A) | t : A
is in Γ∗ ∪∆∗}, where md(A) is the modal degree of A defined in the standard
way. Then for any x, y in Tw we have that x→w y implies md(y) < md(x).

Proposition 4.9 Given a branch B of a proof search for ⇒ x0 : A, (a) any
world label occurring in B generates at most finitely many terms, and (b) any
term occurring in B generates at most finitely many world labels. Whence (c)
Tw is finite.

Proof. (a) Consider first atomic terms: A world label x generates an atomic
term [a] by an application of l2. By its saturation clause, l2 can be applied
to each formula x : 2B at most once. Therefore the problem is reduced to
counting how many different formulas x : 2B can occur in the branch. If x
is x0, i.e. the label occurring in the sequent ⇒ x0 : A at the root, then the
number of these formulas is smaller than the length of A. If x is generated by
a term t, then it is generated by an application of r∀ with a formula [b] : C in
∆∗ principal in the rule application (or by an application of l∃ with a formula
[b] : C in Γ∗ principal in the rule application). Thus all formulas 2B such that
x : 2B is in the branch are subformulas of C or - if t is atomic and different
from τ - subformulas of D, where D is the only formula such that t : D is in
Γ∗ (or t : D is in ∆∗), whose existence is guaranteed by definition of proper
sequents. For complex terms: If x generates n atomic (positive) terms, then
- by means of CT - it generates at most 2n − 1 positive terms. Therefore the
terms generated by x are in any case finitely many.

(b) A term t generates a world label y by an application of r∀ or l∃.
By the saturation clauses of these rules, every expression t : B produces at
most one world label. Therefore the problem is reduced to counting how many
different expressions t : B can occur in the branch. First assume t 6= τ and t
generated by x. Then the number of these expressions depends directly on the
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number of formulas x : 2B in ∆∗, which - as shown in point (a) - are finitely
many. If t = τ : By the properties of the calculus, if τ : B is in ∆∗, then B is a
subformula of A, where A is the formula labelled by x0 at the root. Thus the
possible expressions τ : B in ∆∗ are finitely many. Observe also that there is
no τ : B in Γ∗. In fact, by an application of l∃ this would give a formula y : τ
in Γ∗, against the saturation clause for Nτ .

(c) By the decrease in modal depth stated stated by Lemma 4.8 it follows

that any branch of Tw has a finite length. Moreover, Tw is finitary: if x
w→ y,

then by definition there is a term t such that x →1 t →2 y; but by points (a)
and (b) x is related to finitely many terms and t is related to finitely many
world labels. 2

Theorem 4.10 Any branch B of a proof search for ⇒ x0 : A built in ac-
cordance with the strategy is finite, therefore proof search for any sequent of
the form ⇒ x0 : A always comes to an end after a finite number of steps.
Furthermore, each branch is either closed or saturated.

Proof. By Proposition 4.9, B contains finitely many world labels and neigh-
bourhood terms. Moreover, by the properties of the calculus, in any formula
x : B (or t : B, t : B) that can occur in B, B is a subformula of A, where A is
the formula labelled by x0 in the root sequent. Therefore only a finite number
of labelled formulas can occur in B. Thus, since by the saturation conditions
a rule is not applied more than once to the same labelled formula φ (or the
same pair of formulas φ and ψ), there are always only finitely many possible
rule applications. 2

We now prove semantic completeness of the calculi. This result shows that
given an unprovable formula we can extract a finite countermodel of it in the
bi-neighbourhood semantics. Moreover, by Lemma 2.9 we can also get a stan-
dard countermodel. Observe that this result, combined with the soundness of
TLSE∗, provides a constructive proof of the finite model property both in the
bi-neighbourhood and in the standard semantics.

Theorem 4.11 TLSE∗ is complete with respect to the corresponding class of
bi-neighbourhood models.

Proof. Given a saturated branch B in a proof search in TLSE∗ for the proper
sequent Γ ⇒ ∆, we build a bi-neighbourhood countermodel M to Γ ⇒ ∆
that makes all formulas in Γ∗ true and all formulas in ∆∗ false. Model
M = 〈W,N , V 〉 is defined as follows: W = {x ∈ WL | x occurs in Γ∗ ∪∆∗};
α[a1...an] = {x ∈ W | for all 1 ≤ i ≤ n, x : [ai] is in Γ∗}; α

[a1...an]
= {x ∈ W

| for some 1 ≤ i ≤ n, x : [ai] is in Γ∗}; ατ = W ; ατ = ∅; for any x ∈ W ,
N (x) = {(αt, αt) | t : x is in Γ∗}; for any p ∈ L, V (p) = {x ∈ W | x : p is in
Γ∗}. Then we define the realisation (ρ, σ) by choosing ρ(x) = x for any world
label x, and σ(t) = αt for any positive or negative term t occurring in Γ∗ ∪∆∗.

First of all observe that M and σ are well defined: By the definition of
α[a1...an] and α

[a1...an]
it follows immediately that σ(ts) = σ(t) ∩ σ(s) and

σ(ts) = σ(t) ∪ σ(s). Moreover, σ(t) ∩ σ(t) = ∅. In fact, assume t = [a1 . . . an]
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and αt ∩ αt 6= ∅. By definition, for some 1 ≤ i ≤ n and some y ∈ W , y : [ai]

and y : [ai] are in Γ∗. Since such expressions are never deleted, this means that
there is a sequent Γj ⇒ ∆j in the brach B such that y : [ai] and y : [ai] are
in Γj . Then by Proposition 4.2, Γj ⇒ ∆j is derivable, against the hypothesis
that B is saturated. Finally, from this it follows that (α, β) ∈ N (x) implies
α ∩ β = ∅. By considering all possible cases, it is easy to prove by induction
on the weight of φ that if φ is in Γ∗, then M |=ρ,σ φ, and if φ is in ∆∗, then
M 6|=ρ,σ φ. Moreover, it can be shown that if TLSE∗ contains the rules for C,
thenM is a C-model, if it contains the rules for N, thenM is a N-model, and
if it contains the rules for M, then M is a M-model. 2

Example 4.12 Here is a failed derivation of an instance of axiom M in TLSE:

A: closed

A′: closed y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q
∧l

y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : p ∧ q
r∃

y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q
l∃

[a] : x, [a] : p ∧ q, [a] : p⇒ x : 2p, [a] : p ∧ q
r2

[a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q
l2

x : 2(p ∧ q)⇒ x : 2p

saturated branch B

The bi-neighbourhood model M = 〈W,N , V 〉 defined directly from the satu-
rated branch B is the following: W = {x, y}, N (x) = {(∅, {y})}, N (y) = ∅,
V (p) = {y} and V (q) = ∅. Then we have M, x 6|= 2p and, since [p ∧ q]M = ∅,
we also have M, x |= 2(p ∧ q), thus the sequent at the root is falsified.

If we now consider the set S = {2(p ∧ q),2p, p ∧ q, p, q} and we follow the
definition in Lemma 2.9, we obtain the standard modelMS in which NS(x) =
{[p ∧ q]M} = {∅} and NS(y) = ∅. It is immediate to verify that also MS

falsifies the sequent.

5 Proof-theoretic equivalence of the semantics

In the previous section, we have shown that TLSE∗ is sound and complete
with respect to bi-neighbourhood semantics, thus by virtue of Theorem 2.10
also with respect to the standard semantics. For the non-monotonic case we
now give a proof-theoretical argument to show that the two semantics coincide
(therefore we do not consider rule M in this section). More precisely, we show
that interpreting the negative terms as true complements (as it happens in
standard semantics) does not extend the set of provable formulas, whence the
set of valid formulas. To this purpose we consider the following rule:

x : [a],Γ⇒ ∆ x : [a],Γ⇒ ∆
cmp (x, a ∈ Γ ∪∆)

Γ⇒ ∆
and we show that it is admissible in TLSE∗. Moreover, we also show easily
that by using this rule we can directly build countermodels in the standard
semantics. As before, the analysis is restricted to proper sequents. Observe
that the application of cmp respects (backwards) the constraints of proper
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sequents.

Proposition 5.1 Rule cmp is admissible in TLSE∗ for derivations of proper
sequents.

Proof. First of all, by induction on the height of the derivations one can
prove that (a) if x : [a], [a] : B, x : B,Γ ⇒ ∆ is proper and derivable, then
[a] : B, x : B,Γ ⇒ ∆ is proper and derivable with a derivation of the same
height; and (b) if x : [a],Γ ⇒ ∆, [a] : B, x : B is proper and derivable and x
is in Γ, then Γ⇒ ∆, [a] : B, x : B is proper and derivable with a derivation of
the same height. Then by induction on the height of the application of cmp it
is possible to show how to remove all its applications. We only show the most
significant case, in which x : [a] and x : [a] are both principal in the last rule
of the derivation of the respective premisses. The only possibility is that the
applied rules are l∀ for the left premiss and r∃ for the right premiss:

x : [a], x : B, [a] : B,Γ⇒ ∆, [a] : C
l∀

x : [a], [a] : B,Γ⇒ ∆, [a] : C

x : [a], [a] : B,Γ⇒ ∆, [a] : C, x : C
r∃

x : [a], [a] : B,Γ⇒ ∆, [a] : C
cmp

[a] : B,Γ⇒ ∆, [a] : C

However, since [a] : B,Γ⇒ ∆, [a] : C is a proper sequent, we have that B ≡ C.
Therefore the case under consideration is as follows:

x : [a], x : B, [a] : B,Γ⇒ ∆, [a] : B
l∀

x : [a], [a] : B,Γ⇒ ∆, [a] : B

x : [a], [a] : B,Γ⇒ ∆, [a] : B, x : B
r∃

x : [a], [a] : B,Γ⇒ ∆, [a] : B
cmp

[a] : B,Γ⇒ ∆, [a] : B

where the premisses of l∀ and r∃ are proper. Then by (a) and (b) we have
that also x : B, [a] : B,Γ ⇒ ∆, [a] : B, and [a] : B,Γ ⇒ ∆, [a] : B, x : B
are proper and are derivable with derivations of the same heights. Observe
in particular that point (b) is here applicable because of the condition on the
application of cmp and the definition of sequents, that guarantee that x is in
Γ. By an application of cut to these sequents with x : B as cut formula we
then obtain [a] : B,Γ⇒ ∆, [a] : B. 2

Theorem 5.2 TLSE∗ is complete with respect to the corresponding class of
standard models.

Proof. Let B be a saturated branch in a proof search in TLSE∗ for the proper
sequent Γ ⇒ ∆ satisfying also the saturation condition for rule cmp: If x
and [a] are in Γ∗, then x : [a] is in Γ∗ or x : [a] is in Γ∗. We then build
a standard countermodel M to Γ ⇒ ∆ that makes all formulas in Γ∗ true
and all formulas in ∆∗ false. Let the realisation (ρ, σ) and the model M be
defined as in Theorem 4.11 with the minor modification that for all x ∈ W ,
N (x) = {αt | t : x is in Γ∗}. We only need to prove that M is now a standard
model, that is σ(t) = W \ σ(t). We already know that σ(t) ∩ σ(t) = ∅; we
show that σ(t) ∪ σ(t) = W . If t = τ , this holds by definition of σ(τ). Assume
t = [a1 . . . an]. By saturation of cmp, for all 1 ≤ i ≤ n, x : [ai] or x : [ai] is in
Γ∗. If for some i, x : [ai] is in Γ∗, then by definition x ∈ αt. Otherwise x : [ai]
is in Γ∗ for all i, and by definition x ∈ αt. In addition observe also that by
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saturation of rules CT and Nτ we have that if TLSE∗ contains the rules for C,
then M is closed under intersection, and if TLSE∗ contains the rules for N,
then M contains the unit. 2

Example 5.3 This example shows how to obtain directly a standard counter-
model from a failed branch of a proof search in TLSE which is saturated also
with respect to rule cmp. In the derivation below we extend the branch B of
the proof search of Example 4.12 in order to get such a saturation.

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q, x : p

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q, x : q
∧r

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q, x : p ∧ q
r∃

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q

x : [a], x : p, x : q, y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q
∧l

x : [a], x : p ∧ q, y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q
l∀

x : [a], y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q
cmp

y : [a], y : p, [a] : x, [a] : p ∧ q ⇒ x : 2p, [a] : p ∧ q, y : q

saturated branch C1

saturated branch C2

saturated branch C3

On the basis of the three open branches we define three models following the
definition of Theorem 5.2. The branch C1 gives the model M1 = 〈W,N1, V1〉,
where W = {x, y}, N1(x) = {{x}}, N1(y) = ∅, V1(p) = {x, y} and V1(q) =
{x}. The branch C2 gives the model M2 = 〈W,N2, V2〉, where W = {x, y},
N2(x) = {∅}, N2(y) = ∅, V2(p) = {y}, and V2(q) = ∅. Finally, C3 gives the
same model of C2. It is immediate to verify that they are countemodels to the
sequent at the root. Observe that M2 is the model MS of Example 4.12.

It is instructive to compare this example with the countermodels provided
by the (rather complicated) decision procedure given by Lavendhomme and
Lucas [9] (Example pp. 137-139). The first model they obtain is the following
(after renaming variables): M = 〈W,N , V 〉 where W = {x, y}, N (x) = {{x}},
N (y) = {{x, y}, {x}}, V (p) = {x, y} and V (q) = {x}. The second model is
the same as M except for N (y) = {{x}}. Both models are very similar to our
modelM1, howeverM1 is simpler as N1(y) = ∅. This is essentially due to the
fact that we do not need to saturate worlds with respect to boxed subformulas
as in the procedure given in [9].

6 Conclusion

In this paper, we have proposed labelled calculi for the cube of basic non-normal
modal logic. The calculi are based on bi-neighbourhood models, a variation of
the standard neighbourhood models, where each world is equipped with a set
of pairs of neighbourhoods. The two components of a pair provide separate
positive and negative support for a formula. This semantics might be of inde-
pendent interest, being perhaps more natural for logics without monotonicity.
We have shown that this semantics characterises all non-normal modal logics
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and (in the non-monotonic case) a standard model can be directly built from a
bi-neighbourhood one. The sequent calculi we propose are fully modular and
standard. For logics containing axiom C we actually propose two versions of
the calculi: the first allows a syntactic proof of cut admissibility, whereas the
second handles a more restricted form of sequents and comprises more efficient
rules for handling intersections of neighbourhoods. In any case, the calculi
provide a decision procedure for the respective logics and they are semantically
complete: from any failed derivation of a formula one can effectively (and eas-
ily) extract a countermodel, both a bi-neighbourhood and a standard one, of
the formula. A number of issues deserve to be further investigated: first we
aim to study how to get optimal decision procedures from the calculi. We then
plan to study how our calculi are related to other proof systems known in the
literature, in particular the calculi proposed in [9] and the structural calculi
proposed recently in [10]. We also intend to extend our approach, both the bi-
neighbourhood semantics and the calculi, to stronger non-normal modal logics
determined by the analogous ones of the normal cube from K to S5 and to log-
ical systems below E. Finally, it might be useful to draw a detailed comparison
between bi-neighbourhood semantics and bi-lattice semantics since there is a
resemblance between the two and the latter has recently been provided with a
display proof system in [4]. All these topics will be object of our future work.
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